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Abstract 
 

Sarah S. Goderecci 
CYTOTOXIC AND ANTIMICROBIAL EFFECTS OF SILVER-CONTAINING 

SURFACES 
2016 - 2017 

Gregory A. Caputo, Ph.D. 
Master of Science in Pharmaceutical Sciences 

 

This study examines applications of sputtered silver coatings as alternatives to 

traditional antibiotic treatments. Given the increase in reports of antibiotic-resistant 

bacteria, new treatments and coatings for in-dwelling medical devices such as catheters 

and orthopedic implants are necessary. Silver oxide films were deposited onto Ti surfaces 

to examine the efficacy of such coatings against a variety of bacterial species both in 

vitro and in vivo. Bacterial growth studies showed that coatings exhibited antimicrobial 

activity against a range of bacterial species acting either in a bacteriostatic or bactericidal 

mechanism, depending on the target. Limited toxicity to in vitro mammalian cells was 

evident in the immediate area proximal to the disc and preliminary studies in a murine 

infection model show the ability of immunocompetent animals to clear silver from the 

system. In addition, AgO was examined as an additive to silk biopolymers to add 

antimicrobial activity for future application in liquid bandages. Silver oxide sputtered 

films were applied to standard bandages to compare their efficacy to that of commercially 

available antibiotic-loaded bandages. Silver oxide/copper oxide mixtures were sputtered 

onto high-density polyethylene to determine efficacy and potentially modulate Ag+ 

release rates. Preliminary results of these studies indicate that AgO-impregnated 

biopolymers, silver oxide-sputtered silk films, silver bandages and silver oxide/copper 

oxide mixtures exhibited some efficacy against a variety of bacterial species. 
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Chapter 1 

General Introduction 

Antibiotic Resistance 

Since earliest recorded history, civilizations understood the importance of 

eliminating harmful bacteria and preventing infections, although it was impossible to 

fully understand the cause of such diseases. It was the discovery of Penicillin in 1928 that 

led to the “Golden Age” of antibiotic development; multiple new antibiotic drugs were 

discovered, leading people to believe that all infectious diseases could be cured using 

antimicrobial drugs2. Only ten years following the beginning of penicillin treatment, it 

was identified that a number of bacteria from the Typhoid-coli group of were not 

inhibited by the antibiotic, thought to be due to their ability to produce an enzyme3-4 that 

was able to degrade the antibiotic. Emergence of antibiotic resistance has followed the 

development of each new antimicrobial drug since that time, and has become an 

increasingly devastating and equally challenging obstacle to overcome. 
 

Antimicrobial resistance has proven a worldwide problem, despite differences in 

application and availability of specific antibiotic drugs in different areas of the world. In 

the United States alone, the Center for Disease Control estimated that at least 2 million 

people are infected with antibiotic-resistant bacteria each year, with at least 23,000 dying 

as a direct result5.  Although sometimes difficult to quantify the size and scope of 

resistant infections, one study estimates the cost of treating ear infections alone as having 

increased 20% between 1997 and 1998, costing approximately $216 million. In this 

study, infections were caused by only three bacterial species: S. pneumoniae, H. 

influenzae, and M. catarrhalis6; this study provides a small glimpse into the true cost of 
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antibiotic resistance, yet the larger picture has the potential to be far more devastating. In 

addition, because of the financial burden associated with resistance development, there 

has been a lack of new drugs in the development pipeline, which poses an even greater 

impact for antibiotic resistance. These factors are among the many that are prompting 

research into alternative antimicrobial approaches, including shifting the focus from 

antibiotic treatments to infection control and therapies that have reduced likelihood of 

resistance development in an attempt to combat further diminished effects of current 

antibiotics. 

Understanding the mechanisms by which bacteria overcome an antibiotic is the 

first step in finding alternative therapies. The ability of many types of bacteria to quickly 

adapt and evolve is one of the underlying mechanisms used to develop resistance. 

Antibiotic resistance development can be classified in two broad categories: intrinsic or 

acquired resistance. In the case of intrinsic resistance, the inherent, molecular, and 

physiological composition of the bacteria presents barriers to the action of an antibiotic. 

Most notably, membrane permeability, or the lack of specifically targeted enzymes, is the 

most common causes of intrinsic resistance. Acquired resistance, however, is much more 

complex. In this scenario, the bacterium has come into contact with a plasmid that 

contains determinants for resistance, or the bacterium previously underwent a 

chromosomal mutation, which would allow it to be resistant to the antibiotic. At this 

point, the mechanisms for resistance become dependent on the plasmid acquired or the 

mutation2. One such example of plasmid-mediated antibiotic resistance is quinolone 
 

resistance, which was thought to originate from a genetic mutation, yet the discovery a 

multi-resistant plasmid with the ability to encode for quinolone resistance has changed 
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the general understanding of the underlying mechanism of this type of resistance7. The 

downstream effects of these genetic alterations result in either enzyme production to 

degrade the drug, modification of the drug target, and/or enhanced active export of the 

drug2. 

When prescribed an antibiotic for an illness, patients are instructed to take the 

correct dosage each day for a set number of days to ensure that the source of the infection 

is completely eradicated. In some cases, whether due to antibiotic misuse, overuse, or due 

to bacterial survival mechanisms, viable bacteria remain in the patient even after 

treatment. More recent studies have suggested that bacteria can also overcome antibiotics 

collectively8, rather than only some individuals surviving to replicate and produce an 
 

infection requiring stronger antibiotic treatment. Regardless of the amount of bacteria that 

become tolerant to treatment, antibiotic tolerance is a definite precursor to resistance, and 

should be taken into account by prescribers and patients alike. 

Overprescribing antibiotics has become a major cause of resistance development, 

especially in wealthier nations where antibiotics are more easily available. Worldwide 

antibiotic consumption is a rising trend, and the over-the-counter availability in some 

nations has increased usage in those areas, even despite the medication’s high cost9. In 

China, some hospitals are offered an incentive for antibiotic sales, which drives 

overprescribing; one study estimated that ¼ of the total revenue for two hospitals was 

exclusively due to the sale of antibiotics10. The World Health Organization published a 

study in 2014 analyzing bacterial resistance in 129 nations with a variety of average 

income levels. The data shows that a majority of the resistant cases of E. coli, K. 

pneumoniae, and S. aureus originated in upper-middle income or high-income nations, 
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but no reports were available for low income or low-middle income countries. This 

report, although helpful, highlights another inconsistency in the available data: there is no 

protocol in reporting antibiotic-resistant cases globally, and therefore no comprehensive 

data on the scope of resistance across the globe1. In addition, the World Health 

Organization estimates that the size and scope of antibiotic resistance to classes such as 

beta-lactams (Figure 1) is affecting the population on a worldwide scale. 

The use of antibiotics in agriculture and food production is another major factor in 

the growth and spread of resistance. Extensive research has been done as to the 

mechanism of growth benefit when administering sub-therapeutic levels of antibiotics to 

food-producing animals. Hypotheses of these studies include the inhibition of harmful 

bacteria which may be mildly pathogenic, inhibition of bacterial urease, improved 

efficiency of the gut, nutrient sparing, improved nutrient absorption from morphological 

changes to small intestinal epithelium, and reduced immune stimulation11. One study 

shows an estimated 70% of antibiotics used in the United States are consumed by 

animals, as compared to the 50% used for agricultural purposes internationally12. As 

explained previously, agricultural antibiotic administration poses the risk of enteric 

bacteria in these animals developing tolerance to the administered drugs. This introduces 
 

the prospect of antibiotic resistance developing across multiple species, and in 2014 there 

were multiple gene discoveries in food-producing species that code for antibiotic 

resistance13. Regardless of the benefits of antibiotic administration in agricultural 

settings, it has been confirmed by one extensive study that the use of antibiotics in food- 

producing animals can translate antimicrobial resistance profiles to humans that consume 

them14.  In many cases, antibiotic-resistant genes have been found in both packaged meat 
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and human isolates15; bacteria, after ingestion by consumption or preparation, have been 

found to survive in the human body for up to fourteen days16, enough time to induce 

infection in its host. 

 
Health and Medical Devices 

 

In 2011, the CDC estimated that 721,800 hospital infections occurred in the 

United States, accounting for 1 in every 25 hospitalized patients that year17. Of these 

infections, pneumonia and surgical site infections occurred in the highest number of cases 

(22%), followed by gastrointestinal infections (17%), urinary tract infections (13%), and 

bloodstream infections (11%). In these cases, some of the most common causes of these 

infections were C. difficile (12%), methicillin-resistant S. aureus (MRSA) (11%) and E. 

coli (9%). Although recent reports show that hospital-acquired infection rates are on the 

decline18, alternatives to traditional cleaning procedures and treatments are becoming 

widely investigated. 

Preventing infections has become a goal of both the scientific and medical 

communities in an attempt to reduce antibiotic usage and stop the spread of resistance. 

This practice is becoming increasingly common in the realm of orthopedic surgeries, due 

to the difficulty of treatment and clearance of osteomylytic infection (interior of the 

bone). Stronger antibiotic courses as well as implant retrieval/replacement are common in 

implant-related osteomyelitis. As such, surgical intervention related to infection control 

yields negative outcomes such as patient stress and prolonged hospital stay, all of which 

can cost upwards of $50,000 per instance19. 
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Infections in orthopedic surgeries have become increasingly more prevalent due 

to the ability of bacteria to adhere to the surface of the implant20, although the body’s 

natural immune defenses are boosted following surgical stresses. Should enough bacterial 

cells adhere to the surface of the implant in close special arrangement, biofilms can be 

created on the surface of the implant21. Briefly, biofilms, whether made up of a single 

bacterial division or multiple species, have proven far more resistant to standard 

antibiotic treatments, and in most cases, removal and replacement of the implant is the 

only viable option for complete recovery. The mechanism in which biofilms resist 

antibiotic activity is somewhat variable between species, yet in the case of P. aeruginosa, 

for example, it was found that periplasmic glucans synthesized by the bacteria have the 

ability to interact directly with administered antibiotics, which prevents them from 

reaching their site of action22. This mechanism of resistance is only one example of how 

biofilms can resist antimicrobials, making them anywhere from 10-1,000 times more 

difficult to irradiate than the planktonic bacteria23. In the United States alone, the total 

yearly cost for treatment of biofilm infections is estimated to be $94 billion, while 

infections are responsible for half a million deaths24. 

There are multiple proposed methods for preventing infections post-surgery, 

including preventing bacterial adhesion and absorption, various methods to kill bacteria, 

and ‘smart coatings’ for implants25. Of these, the practice of applying a surface coating 

to the implant has become the most popular, due to lack of continued maintenance and 

near-identical surgical procedure as that of a non-coated implant26. Coating orthopedic 

implants could potentially inhibit bacteria from adhering to the surface of the implant, 

therefore preventing or reducing biofilm growth and therefore, subsequent infection. 
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Silver as an Antimicrobial 
 

Silver was first documented as having been used by early civilizations as a water 

purification tool; silver coins and silver vessels were used to hold and purify collected 

water27. The first documented medical use of silver occurred between 705-750 CE, 

although it was most likely used prior to that time for medicinal purposes. Despite the 

lack of knowledge by early civilizations about microbial infections, it became 

overwhelmingly evident that silver therapies were viable cures for various conditions. In 

the following years, silver was used as treatments for eye infections, surgical dressings, 

burn wounds, ulcer treatments, and compound fractures28-29. The first silver-resistant 

bacteria were identified in the 1960s from a burn wound treated with silver nitrate30, and 

have since been identified in both clinical settings as well as environments where silver is 

naturally-occurring31-32. The resistance mechanism, although not completely understood, 

is thought to be similar to resistance mechanisms of bacteria against others metals (Cu, 

Zn, etc.)32, and although published evidence is scarce, has only been associated with high 

quantities of silver over frequent time periods33. 

Silver’s antimicrobial properties arise from the presence of the silver ion (Ag+)33, 

although the exact mechanism of action is still unknown. Many proposed theories on the 

mechanism of action of Ag+ deal with interactions at the bacterial cell membrane, which 

can affect membrane permeability, cause inhibition of both the proton motive force and 

respiratory transport chain, all of which result in cell death27, 33-34. Based on suspected 

mechanisms, silver can be considered a viable candidate for broad-spectrum 

antimicrobial activity, despite not knowing the frequency or identity of its targets. 
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There are multiple delivery methods and product forms of silver on today’s 

market, yet the common element between each is the delivery of silver ions to the 

affected area. Selected product forms are also dependent on the context in which silver is 

being administered, the solubility profile of the environment, and longevity of activity. 

Currently, silver nanoparticles are considered an efficient method of delivery, largely due 

to their customization profiles and variability. In addition, colloidal silver has been a 

popular ‘cure-all’ remedy, and can be purchased in any number of places. Silver 

inorganic complexes, such as silver sulfadiazine, silver nitrate, silver chloride, and silver 

oxide are also particularly favorable35 but can be difficult to administer due to low 

solubility in water. 
 

Silver Toxicity in Humans 
 

Although silver is found in many aspects of the environment, it is not considered 

naturally occurring in the human body, nor is it acknowledged as a trace element. 

Absorption through food and drink can provide detectable low levels of silver in the 

bloodstream36, these levels have not proven to impact normal function, nor cause 

excessive buildup in organ tissues37. In cases of prolonged silver exposure or extended 

treatment, the most widely-reported side effect is a blue-gray discoloration of the skin or 

soft tissue, referred to as argyria38. In cases such as these, silver accumulation was 

reported in such tissues as the skin, kidneys, liver, corneas, mucous membranes, nails, 

and spleen37, 39-40 although in the majority of cases, silver deposition was merely 

cosmetic, and is not known to be life-threatening41. 



www.manaraa.com

  

There is some concern regarding the possible neurotoxicity of silver, as well as 

the ability of silver ions to cross the blood-brain barriers and induce negative neurologic 

effects42-43. There are at least nine known metals that have been found to accumulate at 

the blood-brain barrier and gain access to neurologic tissues, including the toxic metals 

lead, cadmium, and mercury41-42. Silver-induced neurotoxicity is believed to be rare43, 

however one clinical study showed the effect of colloidal silver as a nasal spray for 2-5 

years on an elderly patient. In a necropsy examination of the brain, significant silver 

deposits were found in only part of the choroid plexus portion, while the majority of brain 

parenchyma tissue appeared normal43-44. Further investigation of the possible 

neurotoxicity of silver are needed before definitive determinations can be made regarding 

the safety of silver therapy over extended periods of time. 

 
Our Study 

 

Adding a coating to the surface of titanium implants has become an increasingly 

popular tactic in dealing with infection caused from surgery45. Previous work has shown 

that using a sputtering technique, silver can be applied in thin coatings to titanium 

surfaces with good adherence, and such coatings were shown to prevent bacterial 

adhesion to the surface46. The goal of this work was to develop and characterize coatings 

that can adhere to surfaces appropriate for medical devices, elute some or all of the 

material from the coating as an antimicrobial in solution, and develop an understanding 

of the release dynamics of the eluted materials. Using a modified reactive-sputtering 

approach, we have applied silver oxide coatings that retain the same materials properties 

as pure silver coatings, but can also elute Ag+ from the surface, which act as an 

antimicrobial in solution. Coatings that elute from a surface are useful in healthcare 
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applications due to their ability to not only prevent adhesion of bacteria to the surface, but 

to kill any bacteria in the immediate area, allowing for maximal wound healing with 

minimal or no antibiotic intervention. This coating approach is potentially useful for 

titanium orthopedic implants as well as catheters, medical instruments, hospital surfaces, 

and other objects at high-risk for bacterial contamination and/or infection. 

Silver-coated titanium. Silver-sputtered titanium discs, used to simulate 

orthopedic implants, were subsequently tested for antibacterial activity in solution. 

Coatings containing different thickness and chemical composition were tested against a 

variety of bacterial species to assess broad-spectrum antimicrobial efficacy, as supported 

by previous results from our lab and the literature. In addition, release rates of silver from 

the coated discs in various media types were studied to determine any relationship 

between rate of release and antimicrobial activity. Furthermore, efficacy and toxicity 

studies are ongoing to assess how sputtered coatings react in in vitro and in vivo systems 

using mammalian cell culture models, as well as a murine infection model. 

Alternative modes of silver delivery. Silk is a biocompatible protein polymer, 

derived from biological sources which degrades into non-toxic products in vivo47, making 

it ideal for biomaterial delivery systems. Silk solutions formulated from Bombyx mori 

caterpillar cocoons were treated and formulated to include various percentages of silver 

oxide, or coated with silver oxide deposited via reactive sputtering. To assess the 

antimicrobial properties of the impregnated and coated silk material, films were deposited 

on the bottom of 96 well plates for analysis. Release rates and antimicrobial properties 

for these films were assessed in solution against various bacterial species. To extend the 

scope of applications for these coatings, silver-coated bandages were also investigated, 
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and were compared against standard bandages and commercially available antibiotic- 

loaded bandages. Current and ongoing experiments are focusing on the antimicrobial 

properties of copper and copper oxide/silver oxide mixtures. Copper oxide’s poor 

solubility profile proved to affect its antimicrobial efficiency, whereas the silver 

oxide/copper oxide mixtures were the most effective in killing bacteria. 
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Figure 1. Resistance to beta-lactam antibiotics 1. 



www.manaraa.com

  

Chapter 2 
 

Antimicrobial Activity of Silver Oxide Containing Thin Films 

Introduction 

Antimicrobial resistance has proven to be an obstacle of overwhelming 

importance to both the medical and scientific communities following the introduction of 

antibiotics in the early 20th century2. The ability of many bacteria to adapt to changing 

environmental conditions can be at least partly a result of their ability to overcome 

pharmaceutical approaches intended to eradicate them. Routine and improper antibiotic 

use is partially responsible for the selective pressure that ultimately provides advantages 

for mutant bacterial strains; those strains have proven far more costly to treat, and often 

require longer hospital stays in comparison to strains that are susceptible to traditional, 

small-molecule antibiotic treatments4. In addition, intrinsic resistance is another factor in 

the resistance cascade: the low membrane permeability of certain bacterial strains makes 

antibiotic penetration of the membrane nearly impossible2. 

Preventing infections is a goal of both the scientific and medical communities in 

an attempt to reduce antibiotic usage and stop the spread of resistance. Infection control 

has become a significant concern in many areas of medicine but is especially critical in 

orthopedic surgery due to the invasive measures that must be taken when infections 

develop post-surgery which are extremely difficult to treat with antibiotics alone. The 

restricted access around surgical implants results in the need for stronger and longer 

antibiotic courses and increased potential for implant retrieval, debridement and device 

replacement. Additional surgeries result in increases in patient stress and prolonged 

hospital stay19. Some studies estimate that 2.5% of primary hip and knee arthroplasties 
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and up to 20% of revision arthroplasties develop a periprosthetic joint infection, with the 

mortality rate for these infections nearly 2.5%9. Current research estimates that if there 

are no successful efforts to combat the spread of resistance, the number of annual deaths 

could increase from the current 700,000 to as many as 10 million by the year 205048. 

Silver has been used for thousands of years in different civilizations for numerous 

applications including food and water purification, ulcer treatments, promoting wound 

healing, as well as prevention of surgical infections29. Antimicrobial studies using silver 

compounds show its efficacy against a wide range of bacterial species including B. 

subtilis, E. coli, P. aeruginosa, P. vulgaris, and S. aureus49-52. The exact antimicrobial 

mechanism of silver is not fully elucidated, but the ability of silver to act against multiple 

bacterial species suggests that silver interacts with multiple bacterial target sites, most 

readily with the thiol groups of cysteine residues53. This is consistent with the high 

abundance of thiol groups in bacterial cell membranes, and silver exhibiting a broad- 

spectrum antimicrobial activity profile. At the bacterial cell membrane, ionic silver 

inhibits the proton motive force (PMF), the respiratory electron transport chain, and 

affects membrane permeability, all of which can result in cell death27, 33-34. Although 

different forms of silver are available, the ones most readily available fall into three 

categories: elemental silver, inorganic silver complexes, and organic silver complexes33. 

Many varieties of silver materials are used in both healthcare and medical device 

industry, yet the release of silver ions from the complex is what ultimately determines the 

compound’s antimicrobial efficacy54. The primary drawback of pure silver is the poor 

aqueous solubility, which limits the ability to act as an antimicrobial over meaningful 

distances from metallic surfaces. Considering the silver ion Ag+ is the likely 
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antimicrobial form, efficient solubilization in the environment is necessary for activity 

beyond the surface46. There are a variety of silver-containing complexes that enhance the 

solubility of silver54. Silver oxide has low solubility in water, however it generates 

enough soluble silver ions to effect antimicrobial activity in several applications55-56. Our 

previous work has shown that silver oxide can be efficiently deposited as thin-film 

coatings on a variety of surfaces and retains the ability to generate sufficient 

concentrations of Ag+ to exert antimicrobial activity57. 

Thin film coatings of silver oxide can be applied to orthopedic implants in an 

effort to inhibit bacteria from attaching to the surface of the implant, therefore 

preventing/reducing biofilm growth and subsequent infection. The solubility of silver 

oxide also allows for antimicrobial activity distal to the implant surface, which can 

ameliorate infections in the area of the implant. To further examine the antimicrobial 

efficacy of the silver oxide thin film coatings, parameters such as coating thickness, rate 

of release of silver ions from the surface, and initial cytotoxicity to in vitro mammalian 

cell systems were investigated. The work reported here indicates that relatively short 

exposure of silver oxide thin films to a culture was sufficient to inhibit bacterial growth. 

Additionally, the release of Ag+ ions from the films was not significantly impacted by the 
 

culture medium, but efficacy and toxicity were related to total silver concentration in 

solution. 

 
Materials and Methods 

 

Generation of silver-containing films. Thin films of cubic silver oxide (AgO) 

were grown reactively in a custom designed two-cathode sputter deposition chamber. 
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Each of the cathodes contains a two-inch diameter silver target with 99.95% purity. The 

cathodes are in a confocal configuration pointing upward toward a sample holder that is 

2.54 cm x 5.08 cm. The gas mixture used is 67% argon and 33% oxygen adjusted using 

two mass flow controllers. Argon is adjusted to a rate of 20 sccm while oxygen flows at a 

rate of 10sccm, though other mixtures of argon and oxygen also will work to synthesize 

bactericidal silver oxide. The pressure in the chamber during deposition is held at 

20mTorr controlled by a butterfly baffle valve connected to a capacitance manometer. 

The chamber is configured with a 360l/s turbopump and backed with a Drytel 1025 

vacuum pump. The working distance, the distance from the silver target to the substrate, 

is approximately 8.89 cm. 

Each of the cathodes is powered using a MDX-500 DC-power supply applying a 

power of 25 W to each cathode. In the chamber configuration, the deposition rate is 

approximately 17 nm/min. X-ray diffraction results indicate that the coatings are a 

combination of cubic phases of AgO and Ag2O (henceforth referred to as AgxO)57. The 

microstructure of the coatings is measured using a field emission scanning electron 

microscope (JEOL 7500). 

Bacterial culturing. Bacteria were streaked onto LB - miller agar (Difco) plates 

from strains stored in a frozen library (E. coli MG1655, S. aureus ATCC® 25923, P. 

aeruginosa ATCC10145, K. pneumoniae 700603). All streaks were stored in a 

refrigerator at 4°C. To prepare overnight cultures, a single colony of each bacterial  strain 

was added to LB broth (Difco) in sterile culture tubes. Tubes were placed in the shaking 

incubator at 37°C overnight to allow for sufficient bacterial growth. Following the 

incubation period, dilutions of the overnight culture were made in Muller-Hinton broth 
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(Criterion) 1:100; changing broth provides for better short-term bacterial growth and 

facilitates comparisons to MIC assay protocols. 

Bacterial growth analysis. Dilutions were grown to OD600 0.2 - 0.3 before being 

diluted a second time to the indicated experimental range. Calculations were performed 

under the assumption that OD600 = 1.0 is equivalent to ~108 CFU/mL for S. aureus and K. 

pneumoniae and ~109 CFU/mL for E. coli and P. aeruginosa58-60. The bacteria were  

added to fresh Muller-Hinton broth in sterile tubes containing the test piece; total  volume 

in each tube was 3 mL. All experiments with silver-coated discs were performed in at 

least duplicate for each bacterial species tested. OD600 measurements were recorded on 

each of the cultures every 30 min using ultraviolet-visible spectroscopy; between time 

intervals, tubes were agitated at 220 RPM in a shaking incubator at 37°C. 

Growth in cultures pre-incubated with silver. To prepare silver-soaked broth 

solutions, MH broth was added to each of the sterile culture tubes, and tubes were placed 

in the shaking incubator at 37°C. AgxO-coated titanium discs were added to each of the 

tubes at varying time intervals to allow for dissolution of the coating into the solution. 

Following the selected time periods, the pre-incubated silver-containing broth was 

transferred to new, sterile tubes. Following the growth of the bacterial dilutions to  OD600 

0.1 - 0.2, 30 µL bacterial solution was added to each of the pre-incubated broth tubes and 

the experiment carried out as described. At three different equally spaced time intervals 

during the kinetics assay, 3 µL was taken from each test tube and plated on LB agar in 

various positions to assess bacterial growth at those times. Plates were incubated 

overnight at 37°C. 
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Zone of inhibition (ZOI) assay. Dilutions were grown to OD600 0.1 - 0.2. 

Subsequently, 100 µL of bacteria was plated onto lysogeny agar plates and spread using 

sterile glass beads. Each of the 0.635 cm test discs were placed onto the plate using sterile 

technique, coated side down, and plates were placed in the incubator overnight at 37°C. 

Following incubation, plates were moved from the incubator, photographed, and the 

resulting zones were measured. 

ICP-MS analysis. All samples were prepared with deionized water, phosphate 

buffered saline (PBS, 50mM sodium phosphate, 150mM NaCl, pH 7), sterile LB broth, or 

DMEM medium. Medium (10 mL) was added to a sample tube, and test discs were 

subsequently added to the bottom of each tube. Sample tubes were placed in the shaking 

incubator at 37°C for ten-minute intervals. Following the incubation period, the media 

was removed and an equal volume of fresh media was added to the sample tube; release 

experiments were carried out over a one-hour period. 

In the case of kinetics sample preparation, cells from 1 mL of culture from each of 

the tubes used in the growth curve experiment were pelleted for 10 minutes at 6,000 RPM 

in a Benchmark mini centrifuge. The supernatant from each of these tubes was placed 

into a new sample tube, and was combined with 5% nitric acid. The pellet containing the 

bacterial cells was discarded. All ICP samples were run against a standard prepared in  

5% HNO3 containing 1,000 ppm silver nitrate (Ricca) calibrated to fit a linear curve 

model and contain expected experimental outcome values. 

Mammalian cell toxicity assays. NIH3T3 cells (American Type Tissue Culture, 

Manassas, VA) were cultured in DMEM with 4.5 g/L glucose, L-glutamine, and   sodium 
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pyruvate (10-013-CV; Corning, Manassas, VA) with 10% FBS (35-010-CV; Corning) 

and 1% penicillin-streptomycin (P0781; Sigma-Aldrich, St. Louis, MO). NIH3T3 

(1.5x106 cells) were plated in a six-well plate approximately 12 hours before adding discs 

and incubated at 37°C with 5% CO2. Titanium only (control) or silver-coated titanium 

discs were gently placed into the wells at the indicated time points before collection. 

Media was removed and centrifuged to pellet any non-adherent cells; adherent cells  were 

gently trypsinized and pooled with the non-adherent cells for each sample. Cells were 

collected and stained using an Annexin-V/PI kit (630109; Clontech, Mountain View, CA) 

and FACs analysis was performed to determine the percentage of apoptotic cells. 

Statistical analysis. Student’s t-test was performed to determine statistical 

significance for the mammalian cell in vitro toxicity assays. All t-tests were performed as 

a comparison to the value for apoptotic cells in the titanium control after 72 hours of 

incubation. A p-value < 0.05 was considered statistically significant. 

Results 
 

Deposition and characterization of AgO films. The result of the microstructural 

imaging of a 500 nm thick sample on a titanium foil substrate is shown in Figure 2. In the 

50 kx image, the lighter regions contain voids at the grain boundaries probably associated 

with the underlying defects in the cold-worked titanium foils used for substrate materials. 

Lower oxygen concentrations during deposition yield larger grains and better-defined 

grain boundaries than the image shown. However, we have no direct evidence that the 

variations in microstructure impacts the performance of these materials. 



www.manaraa.com

  

Effect of AgxO coated discs on bacterial growth in solution. Based on the 

previous findings of AgxO coatings exhibiting antimicrobial activity in solution, 

measurements were extended to a more detailed analysis of coating properties on 

efficacy. Figure 3 shows the growth curves of various bacterial species (E. coli, S. 

aureus, P. aeruginosa, and K. pneumoniae) in the presence of an uncoated Ti disc or a Ti 

disc coated on both sides with ~ 150 nm thick AgxO film. In each case, the culture 

containing the titanium disc exhibited growth comparable to the control culture. In 

contrast, the cultures containing the AgxO-coated discs showed significantly lower OD600 

values for all bacteria tested. These curves indicate that the AgxO coating is eluting from 

the surface of the disc into solution, inhibiting bacterial growth in all bacterial species. 

Additionally, this inhibition was almost immediate upon addition of the AgxO coated disc 

to the bacterial culture, indicating the rate of release high enough to very quickly reach a 

threshold concentration of Ag+ in the culture to inhibit growth. These experiments were 

extended to include bacterial cultures with different initial bacterial cell densities and the 

results were similar (Figure 9). 

 
The design of the experiments in Figures 3 and 9 involve the addition of the AgxO 

coated disc to a bacterial culture in very early log-phase growth (OD600 < 0.1).  However, 

it was of interest to examine how these eluting coatings would behave in actively 

growing mid-log cultures. As such, AgxO coated discs or Ti controls were added to 

cultures of S. aureus or E. coli well into log-phase (Figure 10). The results show that the 

addition of the disc at time 0 caused rapid inhibition of the planktonic culture. The 

cessation of bacterial growth indicated by a plateau in the OD600 was generally seen 

between 30 - 60 minutes after the addition of the disc. Additionally, aliquots of the 
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culture at the final time point (t = 3 h) exhibited growth on LB plates, indicating that the 

Ag+ released into the culture was sufficient to exhibit bacteriostatic activity but not 

bactericidal activity (data not shown). 

The ability of the Ag+ to elute from the coatings and inhibit bacterial growth in 

solution is a promising step toward the development of coatings for device applications. 

Next, the properties of these coatings to prevent bacterial growth on surfaces, was 

investigated using a modified Kirby-Bauer zone of inhibition (ZOI) approach. Briefly, Ti 

discs or discs coated with Ag or AgxO films were placed on agar plates seeded with 

known amounts of bacteria. These plates were incubated and the ZOI was measured 

following 18 hours of growth (Figure 4). The presence of a ZOI indicates that the Ag+ 

ions from the coating eluted and inhibited bacterial growth with this zone. The Ti control 

disc and the Ag-coated discs both exhibited no measurable ZOI, indicating that the pure 

silver coatings were unable to elute and diffuse through the solid agar medium to any 

significant concentration able to prevent bacterial growth. For this reason, as well as the 

cost of material, pure Ag+ coatings were used minimally in liquid culture assays (data not 

shown). In contrast, the AgxO coated discs clearly caused a ZOI, ranging from 0.8 - 1.0 

cm in diameter. This inhibition of bacterial growth around the disc clearly indicates that 

Ag+ is eluting from the disc at high enough concentrations to inhibit bacterial growth. 

Silver ion release into culture media. The results above and from previous 

work46, 57 support the hypothesis that the antimicrobial activity of the AgxO coatings is 

directly tied to the elution of Ag+ from the films. This was further examined by pre- 

conditioning fresh culture media by incubating an AgxO coated disk in media for a fixed 

amount of time before adding a bacterial inoculum. Figures 5A and B show the growth 
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curves of E. coli and S. aureus in media that was incubated with AgxO-coated discs for 

variable times. In both cases, media that was pre-incubated for the longest times (30, 60, 

120, 240 minutes) prevented the growth of the inoculated bacteria. In the case of S. 

aureus, the 6-minute pre-incubation did not elute enough silver into the media to 

completely inhibit bacterial growth. However, it is notable that the growth profile of S. 

aureus was significantly inhibited, lagging well behind the growth profile of the 

untreated control culture. These results indicate that the release rate of Ag+ from the 

AgxO films is sufficiently fast to reach a threshold concentration in solution to inhibit 
 

bacterial growth. 
 

The bacterial cultures grown in pre-conditioned media were investigated to 

determine if the Ag+ acted in a bactericidal (killing bacteria) or bacteriostatic (inhibiting 

bacterial growth) mechanism. At selected time points during the course of the growth 

curves, a small aliquot of the culture was removed and spotted onto LB-agar plates, 

which were incubated for 18 hours to allow bacterial growth (Figure 5C). If the Ag+ is 

acting as a bacteriostatic agent, the bacteria should become viable upon removal from the 

Ag-containing culture and grow on the solid media while a bactericidal action would 

leave no viable bacteria to grow on the plate. Strikingly, the preconditioned media 

exhibited different mechanisms for the Gram-negative E. coli (Spots 1-6 in Figure 5C, 

taken at 3h time point in the growth curve) compared to the Gram-positive S. aureus 

(spots 7-12, Figure 5C taken at 3h time point in the growth curve). The concentrations of 

Ag+ in solution were bactericidal for E. coli but were bacteriostatic for S. aureus. 

Aliquots from the cultures were also plated corresponding to different time points (0 and 

6h) in the growth curve and similar results were found (Figure 12). 
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The release of Ag+ into the pre-conditioned growth media solution was further 

characterized by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is 

capable of detecting metals and certain non-metals in very low solution concentrations 

(<0.1 ppm). The results of ICP-MS on LB media that was pre-conditioned for the same 

time intervals are shown in Figure 5D. These results clearly show an increasing Ag+
 

concentration as a function of time, indicating continual release.  The longest time point 
 

(240 min) exhibits a similar concentration as the previous (120 min) indicating this may 

be near the saturation point for this media type. 

The effect of release rate was also examined by modifying the size of the coated 

disc used in the experiment. The release rate of Ag+ will be directly dependent on the 

surface area of the disc, that is, the surface area exposed to the media and nucleation sites 

for release. This was performed by exchanging 0.3175 cm diameter discs for the 0.635 

cm diameter used in previous experiments, while keeping the composition of the coating 

the same. Figure 11 shows by decreasing the surface area, a 0.3175 cm disc did not 

prevent bacterial growth, however by adding two or more 0.3175 cm discs to the same 

culture, the bacterial growth inhibition was restored. 

The concentration of Ag+ in the pre-conditioned media indicated a time- 

dependent release profile, consistent with our previous findings. This was extended to 

examine the effect of environment on the release rates, as the majority of previous reports 

focused on the release profile in water, while in vitro cellular experiments take place in 

much more complex media. Figure 6 demonstrates the cumulative silver release in water 

and various media types as measured by ICP-MS. The results show that the Ag+ elutes at 

a faster rate in water compared to the more complex media tested (LB used for bacterial 
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growth experiments and DMEM used for mammalian cell growth conditions). 

Interestingly, the release rate of simple phosphate buffered saline (PBS) is slower than 

water but faster than the complex growth media. The overall trend of release rates is H2O 

> PBS > LB ≈ DMEM.  The release rates calculated from these experiments and statistics 
 

are included in the supplement (Table 1). 
 

Silver absorption by bacteria. The results in the previous experiments show that 

the eluted silver ions are the driving force behind the antimicrobial activity. This was 

extended to investigate the association of eluted Ag+ to bacteria in solution. Starting with 

cultures used in the growth curve experiments in Figure 3, a portion of the culture was 

pelleted, dissolved in 5% nitric acid, and subjected to ICP-MS analysis. In all cases, 

bacteria exposed to AgxO coated discs displayed significantly higher silver content in the 

pelleted cells compared to titanium controls (Figure 7). This indicates the Ag+ ions are 

stably associated with or are being taken up by the bacteria. It should be noted that the 

cell pellets for the AgO treated samples were very small compared to the control, as the 

number of viable cells was much smaller. Additionally, while there was some variability 

between samples, all bacteria tested exhibited approximately the same amount of Ag 

associated. 

AgxO cytotoxicity in mammalian cell culture. Ag+ ions have been shown to be 

toxic to mammalian cells at certain concentrations61. Therefore, it was of interest to 

determine whether AgxO discs and the eluted Ag+ from these discs are toxic to murine 

fibroblasts (NIH3T3 cells) in vitro. Cells (1.5 x 105) were seeded in 6-well plates in 

complete media. Cells were incubated with either no disc, uncoated Ti disc, or AgxO 

coated Ti discs for the indicated times, and apoptosis was analyzed using the Annexin-V 
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assay. Figure 8 shows that apoptosis significantly increased by 48 hours in cells 

incubated with discs coated with 150 nm films on one or both sides of the disc. 

Interestingly, the percentage of apoptotic cells appears to plateau at approximately 40% 

in both cases. Of note, it was observed microscopically that cells immediately 

surrounding the disc showed signs of cell stress prior to cells located distally to the disc, 

which is likely due to an increased local concentration of Ag+ ions after or during elution 

(data not shown). Collectively, these data suggest that high silver concentration in the 

local environment eventually becomes toxic to the local cells. 

 
Discussion 

 

Overall, the experimental results presented show a distinct and rapid inhibition of 

bacterial cell growth in planktonic culture and on surfaces due to the presence of AgxO 

coatings. This inhibition is clearly linked to the ability of coatings to elute silver ions into 

solution, or the local environment. The concentration of Ag+ eluted into solution was 

directly dependent on the size of the eluting surface, exposure time, and the composition 

of the coating46, 57. 

As mentioned previously, silver has been used as a method for sterilization for 

thousands of years62. Notably, in that time, there has been limited development of 

resistance to silver33. The lack of resistance development is credited to the ability of 

silver to induce response in a variety of targets in bacterial cells, both membrane and 

cytoplasmic; multiple bacterial targets also contributes to silver’s broad-spectrum 

activity34, 57, 63-64. In reported cases of increased silver resistance, the main determinant 

involves a periplasmic metal-binding protein, a chemiosmotic efflux pump, and ATPase 
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efflux pump65-66. These plasmid-encoded pumps, which actively transfer the Ag+ out of 

the cell, are thought to be a major cause of silver resistance65-66. The development of 

silver resistance is not widespread, which can be attributed to the broad-spectrum activity 

and the proposed mechanisms, which target multiple bacterial components63. Although 

resistance to silver is a possibility, the rate of development appears to be slower than 

alternative antimicrobial agents, which gives promise to future development of silver- 

based antimicrobial therapies in combinatorial and mixed-therapy applications67. 

However, one of the main limitations to using silver as an antimicrobial agent or in 

combination approaches has been the limited solubility of pure silver metal in aqueous 

solutions46. Our previous work and that presented here show a viable strategy for 

developing silver-based coatings that circumvent the solubility issue through the use of 

silver oxide. 

 
Coating implants is a widely investigated method of reducing bacterial 

contamination following orthopedic surgeries. The complexities of these surgeries, which 

are often complicated by trauma-related injuries, have yielded a number of different 

strategies for controlling infection both during treatment and post-surgery. One of the 

most common treatments in traumatic injuries is the use of antibiotic-loaded bone 

cement, which is commonly used to fix implants and release a large burst of antibiotics to 

the localized area in order to prevent infections. Due to the amount of antibiotic loaded 

into the cement, after the initial burst, the release occurs slowly and over a prolonged 

period of time; prolonged exposure to antibiotic dosages below the inhibitory 

concentration is a large contributing factor to the spread of antibiotic resistance68-69. The 

AgxO-based coatings described in this work, if applied to a surgical or medical device, 
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would maintain the antibacterial activity seen in the traditional antibiotics in bone 

cements, while decreasing the resistance development threat70. In addition, the silver 

oxide coatings are capable of being applied to a wide variety of surfaces and devices not 

limited to bone cement. The release profiles of silver in complex environments (Figure 6) 

indicate that sufficient silver will be released to be clinically viable as an antimicrobial in 

a wound site, as opposed to the amount used in nanoparticle studies71 0.35 ppm – 1.12 

ppm in our study, compared to 60 ppm - 250 ppm Ag nanoparticles. 

 
Silver nanoparticles have also been commonly used as an efficacious and 

practical way to coat surfaces; recent advances in nanotechnology have afforded the 

ability to vary the size of the particles, and the physical characteristics of the particles, 

and the of the dissolution/elution profile72. However, nanoparticle coatings have a distinct 

set of limitations, based on the fabrication methodology, including inherent variability in 

material composition. The use of nanoparticles has also shown variability in their toxicity 

profile, due to the variability in material composition73-74. Nonetheless, nanoparticles do 

provide a straightforward route to biologically active silver, although this route is often 

confounded by variability in elution rates, the mechanical properties of the nanoparticles, 

and the ability to adhere the nanoparticles to surfaces. 

The majority of recently reported work utilizing Ag+ compounds as antimicrobials 

incorporates the use of nanoparticles; in fact, 30% of total nano-products are nano-silver 

particles60. Nanoparticles have become a popular alternative material for the creation of 

antimicrobial coatings on medical devices and bandages. Although copper, zinc, 

titanium75, magnesium, gold76, and alginate77 have all been tested for activity, silver 

nanoparticles have proven the most efficacious against a wide range of bacteria and 



www.manaraa.com

  

viruses72. When three types of nanoparticles were compared in a growth curve analysis to 

AgNO3 as a positive control, only the highest concentrations of both colloidal and 

biogenic nanoparticles were able to inhibit growth comparable to the positive control in 

both Gram-positive and Gram-negative bacterial species78. Concentrations of Ag+ the 

aforementioned study ranged from 0.47 µg/mL – 0.53 µg/mL, with the lowest of those 

showing no antimicrobial activity78. In comparison, the concentrations in the study 

presented here ranged from 0.35 µg/mL – 1.12 µg/mL, and showed comparable 

antimicrobial efficacy for both Gram-positive and Gram-negative species at 0.52 µg/mL 

(equivalent to 30 minutes of release in LB). 

Numerous studies have shown that nanoparticle delivery of Ag+ is more toxic to 

mammalian cells than delivery via Ag-coated biomaterials79-80. Therefore, novel methods 

for coating biomaterials with various Ag compounds in order to control Ag+ release have 

been investigated57, 81. Numerous in vitro and in vivo studies have recently been 

performed using various Ag-coated materials and have demonstrated antibacterial 

efficacy in the absence of mammalian cell cytotoxicity82-88. Our in vitro cytotoxicity 

results demonstrate that our coatings show cytotoxicity only in a portion of the cell 

population at 48 hours (Figure 8). Microscopic analysis demonstrated that toxicity was 

apparent in the cells immediately surrounding the disc and not cells located distally, 

suggesting that that the local concentration of Ag+ is higher than the rest of the culture 

(data not shown). Preliminary in vivo results show that subcutaneous implantation of the 

AgxO-coated titanium discs in mice does not result in a detectable increase in Ag+ in 

blood compared to controls up to 21 days (data not shown). Collectively, these data 

suggest that in a “closed system”, such as a tissue culture plate, that accumulation of Ag+
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ions can become cytotoxic, which was also suspected by another group in their model 

system87. However, in an “open system”, such as an animal, removal of Ag+ from the 

local environment via circulation can reduce or eliminate cytotoxic effects. Additional in 

vivo experimentation to investigate the toxicity of these particular coating compositions is 

warranted. 

 
Previous work has shown that AgxO coatings created via reactive sputtering 

methodologies are vastly superior to nanoparticle materials with regard to uniformity of 

coating morphology, and exhibit a significantly higher elution rate of silver57, 89. The 

elution rate is the key determinant of antimicrobial efficacy, as silver concentration in 

solution causes bacterial cell death or bacterial growth arrest32. This was confirmed by 

ICP-MS experiments that were linked to bacterial growth assays (Figures 3, 5, and 7). 

The results presented here clearly show that the amount of Ag+ released from the coatings 

is linked to the antimicrobial activity, and our initial results indicate that the Ag+ 

concentration in solution is also linked to the bactericidal vs. bacteriostatic mechanism of 

action of Ag+ (Figures 5 and 12). The results indicate that ~3.24 µM Ag+ in solution is 

sufficient to exert bactericidal activity against E. coli. This is a lower concentration when 

compared to published reports stating that 18.9 µM Ag+ is required for complete 

inhibition of growth90. On the other hand, our data shows that even at the highest final 

concentrations (10.38 µM Ag+ – 4h time point), silver was acting as a bacteriostatic agent 

against the Gram-positive species, S. aureus. This bacteriostatic activity is in agreement 

with several reports in the literature, however the mechanism of bactericidal vs. 

bacteriostatic activity was not reported in any of the publications where Ag concentration 

was directly measured91-93. 



www.manaraa.com

  

The difference in bacterial response to Ag+ in both Gram-negative and Gram- 

positive bacterial species is evident in the work presented, yet has been previously 

studied in an attempt to better understand silver’s antimicrobial mechanism. When strains 

of S. aureus and E. coli were exposed to Ag+, a cellular stress response led to the 

condensation of DNA into the center of the cell, cell membrane detachment from the cell 

wall, cell wall damage, cell shrinkage, and dehydration for both strains94. Although 

damage to the cells appeared similar, E. coli (Gram-negative) sustained more extensive 

structural damage than S. aureus (Gram-positive)94. Hypotheses for reduced 

susceptibility of Gram-positive bacteria to Ag+ are rooted in the composition of the cell 

wall of Gram-positive bacterium, which is slightly more negatively charged due to a 

larger presence of peptidoglycan, and therefore thought to trap some Ag+ in the cell 

wall95. Observations from various studies were confirmed in the data presented in Figures 

5 and 12; Ag+  induces a bacteriostatic effect in Gram-positive bacteria, and a 

bacteriolytic effect in Gram-negative bacteria94, 96-98. While bacteriostatic agents leave the 

infectious particles intact, it provides a limitation to increase infection scope, and can 

provide opportunities for combinatorial approaches to clear the infection, including 

additional administered therapeutics or allowing time for the host immune system to clear 

the infection. 

 
Conclusion 

 

In this study, silver oxide was applied to titanium foil to test antimicrobial activity 

as a proof of concept for medical device applications. The coatings were deposited using 

a reactive sputtering method that allows the process to be carried out at room 

temperature, making large-scale manufacturing process and applicability to alternative 
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substrates viable options for future application46, 57. In addition, the sputtering method can 

be adjusted to produce variability in coatings including chemical composition and 

adjustable elution rates46, 57, 99. Coatings can be developed and tailored via composition 

changes or the creation of distinct, multi-layered systems in which each layer of the 

coating has different chemical compositions and/or elution profiles for Ag+. In addition to 

the layering capability, homogeneous coatings of varied chemical compositions can also 

be used to modulate elution profiles. 
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Figure 2. SEM image of a mixed phase sample of silver oxide deposited at 20 mTorr in a 
67/33 mixture of Ar/O2 on a titanium foil substrate. This film is approximately 500 nm 
thick. 
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Figure 3. Antibacterial activity of AgxO coatings in liquid culture. Ti or Ti coated with 
AgxO (~150 nm double-sided) discs were added to cultures of (A) S. aureus (starting 
density ~3.93 x 106 CFU/mL), (B) E. coli (starting density ~3.73 x 107 CFU/mL), (C) P. 
aeruginosa (starting density ~3.53 x 107 CFU/mL) and (D) K. pneumoniae (starting 
density ~3.43 x 106 CFU/mL). Symbols are (p,�) for AgxO-coated discs, (u) for 
untreated control, and (n) for uncoated titanium disc control. 



www.manaraa.com

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Zone of inhibition assay.  Images of LB plates seeded with, (A) S. aureus (B) 
E. coli, (C) P. aeruginosa, and (D) K. pneumoniae. The AgxO disc (labeled AgO on the 
plates) exhibited ZOI of (A) 0.9 cm for S. aureus, (B) 1 cm for E. coli, (C) 0.8 cm for P. 
aeruginosa, and (D) 0.8 cm for K. pneumoniae. Diameter of the disc in each case is 6.5 
mm (1/4”).  No ZOIs were evident for Ag-coated or Ti control discs. 



www.manaraa.com

  

 
 
 
 

Figure 5. Growth curve analysis in media pre-conditioned by exposure to AgxO coated 
(150 nm, double-sided, 1/4”) discs. (A & B) Data shown are (a) S. aureus at an initial 
density of ~1.22x105 CFU/mL and (b) E. coli at an initial density of ~1.34x106 CFU/mL. 
(C) Plating of aliquots of cultures from the 3h time point on LB agar plates (E. coli 
shown in 1-6, S. aureus shown in 7-12); time stations as follows: 0 min. spots 1,7; 6 min. 
spots 2,8; 30 min. spots 3,9; 60 min. spots 4,10; 120 min. spots 5,11; 240 min. spots 6,12; 
(D) ICP-MS analysis of LB media after incubation with AgxO discs for fixed time points 
corresponding to pre-conditioning time points in (A & B). 
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Figure 6. ICP-MS analysis of Ag+ released from Ti discs with a single-sided 150 nm 
thick AgxO coating in (A) water, (B) PBS, (C) LB broth, and (D) DMEM for each media 
type. Data shown are averages of 3 replicates and error bars represent standard 
deviations. Note the difference in timescale for (A) compared to (B-D). 
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Figure 7. ICP-MS analysis of Ag+ from growth curve samples shown in Figure 3. 
Samples were removed at the end of the 6h time course. Black bars represent samples 
taken from cultures treated with the uncoated Ti discs while the gray bars represent 
samples treated with AgxO-coated Ti discs. Error bars represent ranges for AgxO samples 
based on the replicate from each bacterial strain. 
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Figure 8. Mammalian in vitro toxicity assays. NIH3T3 (1.5 x 106 cells) were plated and 
cultured for approximately 12 hours. Discs were then added for the indicated time points, 
then cells collected and stained with Annexin-V and PI. (A) ~150 nm coating, double- 
sided or (B) ~150 nm coating, single-sided discs - all 0.635 cm discs. Assays were 
performed in triplicate and the averages are graphed with standard deviations. 
*p-value < 0.05. 
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Figure 9. Effect of initial culture density on antimicrobial efficacy. Titanium or titanium 
coated with AgxO (~150nm double sided) discs were added to cultures of (A) S. aureus 
and (B) E. coli. Samples indicated are (u) 1:3 dilutions, (p) 1:10 dilutions, (�) and 
1:100 dilutions. 
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Figure 10. Effect of increased culture density on antimicrobial efficacy. Titanium or 
titanium coated with AgxO (~150nm double sided) discs were added to cultures of (A) S. 
aureus (starting concentration of 3.46x106 CFU/mL), (B) E. coli (starting concentration 
of 3.06x106 CFU/mL), (C) P. aeruginosa (starting concentration of 3.70x106 CFU/mL) 
and (D) K. pneumoniae (starting concentration of 5.06x105 CFU/mL) after extended 
growth before additions. Samples indicated are (p) AgxO-coated discs, (u) untreated 
control, and (n) titanium disc. 
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Figure 11. Growth curve analysis using varying numbers of 1/8” AgxO-coated test discs 
for (A) and (B) E. coli, and (C) and (D) S. aureus. In figures (A) and (B), curves are 
shown for a single 0.3175 cm piece, as well as up to five test discs in a single tube; in 
both the cases of S. aureus and E. coli, adding more discs to the test tube decreased the 
bacterial concentration in the tube. Bacterial concentrations for E. coli experiments 
ranged from 5.23x107 – 1.07x108 CFU/mL, S. aureus concentrations ranged from 
6.66x106 - 1.02x107 CFU/mL. 
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Figure 12. Spot platings for both bacterial species at varying time points during the pre- 
conditioned media assay. E. coli is represented at (A) 0 hours, and (C) 6 hours, while S. 
aureus is shown at (B) 0 hours and (D) 6 hours. 

 
 
 
 
 
 

Table 1. 
 
Ag+  Elution Rates in Various Types of Media. 

Media Type Elution Rate (ppm/min) R2 Value 
 

Water 
LB Broth 
DMEM 
PBS 

7.55E-02 + 0.00711 1 
4.55E-03 + 0.00107 1 
3.65E-03 + 0.000608 1 
3.34E-02 + 0.00578 1 

Note. Calculated elution rates as well as R2 values from a linear fit are shown for each 
media type. Values were calculated based on three ICPMS runs for each media type. 
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Chapter 3 
 

Efficacy of Silver Oxide Coatings In Vivo 
 

Introduction 
 

As surgical practices have advanced, so has the ability of the medical community to 

combat surgical complications, including infection (most notably those caused by 

surgical implants). For years, the instances of infections after orthopedic surgeries were 

low, yet recent studies have shown that the risk for post-surgical infection is 

increasing100. Antibiotic resistance and the continued ability for bacteria to overcome 

antibiotic treatment is a likely explanation for an increase in infections in medicine, most 

notably in healthcare settings2, 4. As such, it has become a goal of both the medical and 

scientific communities to develop alternative treatments to reduce the occurrence of post- 

operative infections, most of which occur on the surface of the implant. Targeting 

bacterial adhesion is a common strategy in preventing biofilm formation, which occurs 

when microorganisms attach to a surface and embed in a matrix of secreted proteins, 

nucleic acids and polysaccharides101. Biofilms are often more resistant to treatments, and 

can exacerbate the effects of the infection102. In the United States alone, an estimated 1.7 

million healthcare-acquired infections each year are caused by biofilms, accounting for 

$11 billion in healthcare costs5, 103; it is estimated by the CDC and NIH that 65-80% of 

infections can be attributed to biofilms104. 

Silver has been known as an antimicrobial agent for centuries, but its use decreased 

with the rise in the use of antibiotics in the late 1900’s. Yet the rise of antibiotic resistant 

organisms has renewed interest in the use of silver compounds for this purpose. Silver 

resistance has been identified, yet the majority of silver resistant bacteria were isolated 



www.manaraa.com

  

from environments in which silver and other metals were naturally-occurring32 as well as 

reports in clinical environments and wounds treated with silver nitrate32. Upon further 

research, the silver resistance mechanism was found to be very similar to that of other 

metal-resistance mechanisms, and in that way, has been widely studied32, 105. The primary 

mechanism of silver resistance is linked to metal efflux pumps, which export silver out of 

the bacterial cytoplasm105-106. 

Coating orthopedic implants with silver nanoparticles has become somewhat 

common, yet recent data suggests that silver oxide formulations are more efficacious 

against microbial organisms, as well as less toxic towards mammalian cells than 

nanoparticles55, 79. The use of coatings at the surface of an implant rather than systemic 

antibiotic treatment to control post-operative infection is ideal to prevent selection of 

antibiotic-resistant pathogens. 
 

Preliminary studies were conducted on AgxO-coated discs to assess antimicrobial 

efficacy in solution. It was found that silver coatings eluted Ag+ from the surface of 

coated titanium discs in sufficient concentration to kill various bacteria. It was also 

previously shown that there was limited toxicity against mammalian cells in in vitro 

assays. While useful in determining toxicity of agents, in vitro assays are limited in that 

they are a closed system, which does not accurately recapitulate a dynamic and 

exchanging in vivo environment. In contrast, the mammal is an open system, capable of 

removing molecules, including silver ions, from a local area to reduce concentration 

and/or eliminate the molecule from the system. 
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The goal of this study was to determine the efficacy of AgxO-coated titanium discs in 

preventing bacterial adhesion in a mouse model of infection. This was done by 

subcutaneous implantation of AgxO-coated discs in mice, and subsequent injection of a 

specified amount of fluorescent bacteria to induce probable infection. 

 
Materials and Methods 

 

Bacterial culturing. Luminescent bacteria, S. aureus (Xen-36), E. coli (Xen-16), 
 

P. aeruginosa (Xen-5) (Perkin Elmer, Waltham, MA) were streaked onto LB - Miller 

agar (Difco) plates from frozen glycerol stocks, grown overnight at 37°C in a non- 

humidified chamber, and stored at 4°C. 

To prepare overnight liquid cultures, a single colony of each bacterial strain was 

added to 3 mL LB broth (Difco) in sterile culture tubes. Tubes were placed in a shaking 

incubator at 37°C overnight to allow for sufficient bacterial growth. Following the 

incubation period, dilutions of the overnight culture were prepared in Muller-Hinton 

broth (Criterion) 1:100; changing broth provides for better short-term bacterial growth 

and is comparable to MIC assay protocols. 

Bacterial growth analysis. Protocol followed is explained in Chapter 2, Materials 

and Methods section labeled ‘Bacterial culturing’. 

ICP-MS analysis. All ICP samples were compared against a standard prepared in 

5% HNO3 containing 1,000 ppm silver nitrate (Ricca) calibrated to fit a linear curve 

model and containing expected experimental outcome values.  Media collected from the 

in vitro toxicity assays was analyzed in order to assess silver content in 5 mL DMEM 

with a starting concentration of 1.5x105 cells. 
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For mouse blood sample preparation, approximately 100 µL of blood was 

collected into a centrifuge tube containing 50 µL of 5% sodium citrate via submandibular 

bleeding at the indicated times post-surgery. Cells were pelleted at 5,000 RPM for 5 min, 

and 100 µL of supernatant was added to 3 mL of 5% HNO3. Samples were then analyzed 

by ICP-MS in order to determine serum silver concentration. 

In vivo bacterial adhesion assay. Mice were anesthetized using 5% isoflurane in 

O2 for induction and 1-3% isoflurane in O2 for maintenance. A 5.5 cm long, 2.5 cm deep 

incision was made on the back flank of mice and a subcutaneous “pocket” created. A 

AgxO-coated or titanium uncoated 1 cm x 2 mm titanium disc was inserted into the 

“pocket” and the incision closed with surgical staples. PBS or one of three luminescent 

variants of clinically relevant pathogens, S. aureus, Xen-36 (105 CFU), E. coli, Xen-16 

(107  CFU), and P. aeruginosa, Xen5 (105  CFU) (Perkin Elmer), were then introduced 

into the area near the surgical “pocket” by subcutaneous injection of the biomaterial 

using a needle for precision. Temperature and body condition of the mice were monitored 

daily. 

 
Results 

 

Effect of silver-coated discs on bacterial growth. AgxO coatings were 

previously tested on non-luminescent varieties of common healthcare-acquired bacterial 

strains to determine coating thicknesses and efficacy in solution (Chapter 2). 

Luminescent bacterial strains were used to provide the option of imaging the mice to 

observe the infection, as well as obtaining luminescent readings for bacterial cultures 
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after the disc removal. Previous experimentation confirming the antimicrobial efficacy of 

the test discs was performed with non-luminescent bacterial strains. 

Figure 13 shows the growth curves of various luminescent bacterial species (S. 

aureus, E. coli, P. aeruginosa - provided by Perkin Elmer) in the presence of a titanium 

disc, or a 150nm AgxO coated double-sided disc, one replicate made from two different 

batches. (Double-sided discs are coated with the indicated silver formulation on both 

sides of the disc; single-sided discs are only coated on one side.) The cultures containing 

the coated discs exhibited growth inhibition when compared to the control culture and the 

titanium cultures, as well as reproducibility between batches. The results from this 

experiment match previously reported data, as outlined in Chapter 2. 

Toxicity of AgxO coatings in NIH3T3 cell lines. Previous results demonstrated 

that exposure to either a 150nm double- or single-sided disc induces apoptosis of 

NIH3T3 cells in culture. Figure 14 shows that silver ions consistently eluted from the 

discs (both double sided, A, and single sided, B) over the course of the experiment. 

Importantly, silver ion concentration continued to rise in the media over the time course 

examined (data not shown). 

Establishing the in vivo bacterial adhesion assay. In order to determine whether 

AgxO coatings can limit or reduce bacterial infection in vivo, a mouse model of infection 

was established. Mice were anesthetized and injected with buprenorphine; titanium discs 

were then placed subcutaneously, the wound was closed using surgical staples, and the 

mice were injected subcutaneously with PBS or a culture of a luminescent bacterial 

strain, as indicated. Mice were live-imaged at various points post-surgery to visualize 
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luminescent bacteria and X-ray imaging was performed to visualize the mice. Bacteria 

could be detected in vivo by 4 days post-surgery (Figure 15A, 15C, 15D). However, the 

immunocompetent mice were able to clear the infection by 2 weeks (Figure 15B). Pilot 

studies were performed with immunocompromised mice under the supervision of the 

attending veterinarian; regular monitoring of the mice indicated hypothermia in a high 

number of infected animals, which required immediate euthanasia to prevent imminent 

death107. Therefore, all subsequent experiments were performed in immunocompetent 
 

mice with 2-4 days of infection. Discs were retrieved from euthanized mice and cultured 

in LB to determine the presence of bacteria (Figure 15E); OD600 and luminescence 

measurements demonstrate that the bacteria adhering to the disc are the injected 

luminescent bacteria and not an opportunistic infection (Figure 15F). 

 
Determining the safety of AgxO-coated discs in vivo. In vitro studies suggested 

that AgxO-coated titanium discs are toxic to mammalian cells, as reported in Chapter 2. 

Of note, it appeared that the cells closest to the disc died first, while those distal to the 

disc did not show signs of apoptosis by 72h (data not shown). These data suggest that the 

local concentration of silver ions may be high enough to induce apoptosis in a closed 

system. However, this is not indicative of an in vivo system, since animals are capable of 

clearing silver ions from the local area and excreting them from the organism. Therefore, 

whether Ag+ can be detected in the serum of mice implanted with AgxO-coated discs was 

evaluated. Figure 16 shows that there were no detectable increases in silver ion 

concentration in mice implanted with AgxO-coated discs compared to control mice 

implanted with an uncoated titanium disc. Interestingly, there was no indication of tissue 

damage in mice implanted with the AgxO-coated discs up to 21 days post-surgery 
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(Figures 17B and 17C) as compared to those implanted with titanium controls (Figure 

17A). However, long-term toxicity studies will have to be performed in order to 

determine the feasibility of using AgxO formulations in the clinic. 

Discussion 
 

Overall, the experimental results presented show the ability of AgxO-sputtered 

discs to inhibit luminescent bacterial growth, as well as their limited toxicity in cellular 

culture. Observed toxicity was confined primarily to the immediate area surrounding the 

disc, suggesting that testing in a closed system is not indicative of in vivo results. In 

addition, in vivo testing produced an infection model in immunocompetent mice as well 

as methodology to remove and quantify bacterial adhesion on the implanted disc. When 

blank discs were replaced with AgxO discs in the mouse bacterial adhesion model, blood 

samples were removed from test animals and silver concentrations were found to be 

similar in both the control subjects and test subjects three weeks post-surgery. 

In vitro experiments demonstrate that Ag+ eluting coatings do result in some level 

of toxicity to mammalian cells. The antimicrobial activity is directly linked to Ag+ 

concentration in solution, and reports in the literature indicate that silver ion 

concentration can result in mammalian cell toxicity61, 108. To address the concentration- 

toxicity relationship, we analyzed silver concentrations by ICP-MS from in vitro cell 

culture experiments (Figure 14). When compared, the single-sided discs (Figure 14B) 

produced silver concentrations approximately half that of the double-sided discs (Figure 

14A), and at all time points including AgxO-sputtered discs Ag+ content was relatively 

equal, indicating that at 24h the culture has reached saturation. As reported previously, 
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the double-sided discs had a reported maximum toxicity of approximately 40% at the 72h 

time point (Chapter 2) and an average Ag+ content of 8.63 +/- 0.333 ppm. In the same 

respect, the single-sided discs had a reported maximum toxicity of approximately 36% at 

the 48h time point and an average Ag+ content of 3.68 +/- 0.691 ppm. In both cases, the 

apoptotic cells were located in immediate proximity to the test disc, indicating that in 

open systems, toxic effects may be minimized. When compared to a similar study, silver 

nanoparticles were used to determine both IC50 and total lethal concentrations of Ag+ in 

NIH3T3 cells; these concentrations were found to be 72 ppm and 86 ppm, respectively61. 

When compared to the experimental values, even the higher concentration, double-sided 

discs were eight times below the LC50 value. 

In an effort to extend the in vitro toxicity studies to an in vivo system, both 

immunocompetent and immunocompromised mice were implanted with uncoated 

titanium discs and injected with various luminescent bacterial strains. Mice were imaged 

to further identify the scope of any bacterial infections, although in some cases, evidence 

of infection was observed before imaging. Figures 15A and 15B show mice infected with 

S. aureus, in which half of the test mice were able to clear the infection before imaging 

(Figure 15B). The optimal imaging period was determined to be 2-4 days in the 

immunocompetent model for S. aureus, P. aeruginosa (Figure 15C) and E. coli (Figure 

15D) mice. None of the immunocompromised mice were imaged; shortly after surgery, 

the majority of infected mice showed symptoms of hypothermia indicating likely 

systemic infection and imminent death, so the mice were euthanized and experiments 

with immunocompromised mice discontinued. Further investigation in 

immunocompromised models will require an adjusted bacterial load and a different 
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immunocompromised mouse model. Following imaging, discs were extracted and 

cultured at 37°C overnight in order to quantify bacteria (Figure 15E). OD600 and 

luminescent measurements were performed on the cultures (Figure 15F); luminescence 

confirms that the bacteria attached to the disc are the injected bacteria and not an 

opportunistic infection. Culturing of the implanted discs confirms that the bacteria were 

viable, as well as reinforces the previous findings that the effects of AgxO on E. coli is 

bactericidal, while S. aureus is bacteriostatic. 

 
There are various in vivo models that can be utilized to study infection, including 

non-mammalian models, such as C. elegans109. For the purposes of these studies, it was 

concluded that a mammalian model, mice in particular, would yield the most translatable 

data. There are numerous infection models that can be employed in mice, including 

central venous catheter models, subcutaneous foreign body infection models, 

intraperitoneal foreign body infection models, urinary tract infection models, ear, nose 

and throat infection models, respiratory tract infection models, and osteomyelitis 

infection models109. The subcutaneous foreign body infection model was utilized in these 

studies, as this is the least invasive and least technically challenging of the models 

indicated above. In addition, this is the best system out of those listed above for inserting 

the coated discs that have been utilized in this study thus far. For example, the coated 

discs could not be inserted in an intraperitoneal foreign body infection model. In the 

future, it is possible that additional systems will be utilized. For example, coating of 

catheters and using the urinary tract infection model or the central venous catheter model 

may be utilized. 
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Following the previously established protocol, AgxO-sputtered discs were inserted 

into mice to assess toxicity and Ag+ levels in the blood. Following blood draws at various 

time points post-surgery, ICP-MS analysis of samples obtained from mice containing 

uncoated Ti discs and AgxO sputtered Ti discs confirmed that there was no difference in 

silver content in the blood between both groups. This confirms the ability of silver to be 

readily removed from the body in an open system. Extensive studies have been 

completed on the oral toxicity of silver in both murine and rat models, which provide 

some insight into the levels of silver ions that cause systemic toxicity in each model. 

Following oral doses of silver nanoparticles in a murine model, silver was detected nearly 

system-wide, in the liver, kidneys, brain, skin, pelt, spleen, eyes, muscles, blood, small 

intestine, stomach, lungs, bladder, prostate, tongue, teeth, salivary glands, thyroid, 

parathyroid, heart, pancreas and duodenum44, 79, 104, 110-120. In a separate study conducted 

with rats, tissue accumulation of silver was found to be dose-dependent following an 

initial oral dose80. Further experimentation is required to assess if subcutaneous 

administration of silver will yield a similar system-wide presence in a murine model, as 

well as if certain organs will be more affected by the presence of silver than others. 

 
Conclusion 

 

Follow-up experiments are currently demonstrating that the coatings are more 

efficacious against Gram-negative compared to Gram-positive bacteria. These results are 

consistent with previous results showing the tendency for AgO to be bacteriostatic to 

Gram-positive and bacteriolytic to Gram-negative bacteria. Additionally, further 

experimentation in the murine infection model should provide further insight into the 

excretion methods of silver from the body, as well as potential specific organ toxicity. 
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Figure 13. Effect of initial culture density on antimicrobial efficacy. Titanium or 
titanium coated with ~150nm AgxO double-sided discs were added to cultures of (a) S. 
aureus (Xen-36) (starting concentration: 1.10x105 CFU/mL), (b) E. coli (Xen-16) 
(starting concentration: 2.13x106 CFU/mL), and (c) P. aeruginosa (Xen-5) (starting 
concentration: 1.71x106 CFU/mL). 
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Figure 14. Silver concentration following exposure to various discs and times. Uncoated 
or AgxO coated titanium discs, (a) 150nm double-sided or (b) 150nm single-sided, were 
added to 1.5x106 NIH3T3 cells in a 6-well plate for the indicated times and cellular 
toxicity determined by Annexin-V assay. Media was collected at each time point and 
analyzed by ICP-MS for silver ion concentration. Assay was performed in triplicate. 
*p-value < 0.05. 
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Figure 15. Detection of luminescent bacteria in vivo. Pilot studies were performed in 
order to determine the ideal infectious time frame for determining efficacy of the coated 
discs in vivo. Mice were subcutaneously implanted with uncoated titanium discs and 
injected with PBS, S. aureus (Xen-36), E. coli (Xen-16), or P. aeruginosa (Xen-5), as 
indicated. Mice were imaged using an MS/FX-Pro at 2 weeks (D) or 4 days (A, B, C) 
post-surgery. Mice were euthanized, and discs were retrieved and cultured in 5 mL LB 
overnight at 37°C. Representative culture samples from S. aureus (Xen-36) injected mice 
from panel A are shown (E); (F) graphical representation of OD600 and luminescent 
measurements of samples from panel E. 
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Figure 16. Blood analysis of mice subcutaneously implanted with AgxO-coated discs. 
Five mice were subcutaneously implanted with titanium control discs or double-sided 
150 nm AgxO-coated discs. Blood samples were obtained at various days following 
surgery and analyzed by ICP-MS to determine serum silver concentration. 
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Figure 17. AgxO coated discs do not appear to cause damage to cutaneous tissue. 
Approximately six weeks post-surgery, mice implanted with AgxO coated discs showed 
no obvious signs of cutaneous tissue damage (B & C) compared to uncoated control discs 
(A). Inset (C) shows a closer view of the discs on the tissue. 
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Chapter 4 
 

Extension of Silver Oxide Coatings to Materials for Biomedical Applications 

Introduction 

When dealing with coatings for medical devices or other medical settings, an 

important aspect of development is the ability to control the elution rate of an active 

component from the surface. This is applicable to coatings that are designed to elute an 

active component, as well as those coatings that are intended to remain static on the 

surface. Many factors influence the desired elution rate: surface substrate, intended 

bacterial targets, type of implant, and coating composition. It has thus far been observed 

that AgxO is a viable candidate for coating surfaces and/or implants to provide 

antimicrobial functionality. In an attempt to further control the elution rate of Ag+, 

formulations can be manipulated to contain additional components to modulate Ag+ 

elution. By using mixed compositions to create new antimicrobial coatings, the activity, 

toxicity, biocompatibility, and cost of manufacturing will be affected. 

In addition to being a favorable candidate for implant coatings, silver could also 

be considered for other aspects of healthcare as a partial or full antibiotic replacement. 

One such viable example is that of a liquid bandage, yet the delivery solvent, dependent 

on the specific application, could vary. Currently, liquid bandages are commonly made of 

octyl-2-cyanoacrylate, a longer-chain cyanoacrylate approved by the FDA specifically for 

this purpose, although many researchers have tried to alter the structure to provide more 

flexibility121. A variety of biomaterials are candidates for such applications, due to their 

biodegradability and biocompatibility with host extracellular matrix, which gives them 

the distinct ability to be recognized and accepted by the human body122-123. These 
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biodegradability and biocompatibility properties, along with the variety of naturally 

derived biomaterials, provide a viable and diverse set of scaffolds as substrates for drug 

delivery. 

Silks are an example of biomaterials that are used widely in textile manufacturing 

due to their strength124. The silk fibroin proteins in particular exhibit greater durability 

compared to many other biomaterials, providing the possibility of longer-term 

applications47. The durability of silk-based materials can be manipulated, adding a level 

of tunability for specific applications. Silk fibroin proteins are derived from Bombyx mori 

silkworms, and adopt a functional hetero-dimeric beta-sheet structure. The hetero-dimer 

consists of two proteins, a heavy chain (~370 kDa), and a light chain (~26 kDa), which 

are covalently connected through a disulfide bond. The anti-parallel beta-sheet structure 

in the hetero-dimer is formed primarily from 12 repeating hydrophobic motifs124-129 

(Figure 18). The strength and materials properties of silk proteins have been extensively 

studied, and were found to be as strong as, or in some tests stronger than, synthetic high- 

performance polymer fibers125-129. In addition, the silk fiber is coated by a secondary 

protein known as sericin, which acts as an adhesive between fibers, but can also be 

manipulated for material applications130. Given the compositional flexibility, durability, 

and biodegradability of silk fibroin polymers, they can likely be combined with other 

proteins, such as elastin, to form complexes suitable for biomedical purposes. 

 
Bandages are a ubiquitous example of a simple medical device used to ameliorate 

the effects of abrasions and lacerations in both hospital and home settings to help prevent 

infection. Often, commercially available bandages are supplemented with topical 

antibiotics as bacitracin zinc, neomycin sulfate, polymyxin B, or some combination of 
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these, yet recent studies have shown that these antibiotic-loaded bandages are not as 

effective at reducing bacterial loads in wounds as previously believed131-132. Continued 

use of these antibiotic-impregnated bandages will likely contribute to increased resistance 

development, and hence render them less effective over time. Silver-coated bandages 

have often been applied in the treatment of burn wounds27, 133-134 yet recently, these 

silver-coated bandages have been considered as an alternative to traditional antibiotic 

bandage coatings in the treatment of standard abrasions and incision wounds135-136. As 

such, the antimicrobial efficacy of these bandages will be directly linked to the elution 

rate of Ag+ or Ag-containing compounds from the bandages to the wound site. 

As mentioned previously, the antimicrobial properties of metals such as mercury, 

arsenic, silver, and copper have been known for years, but were often overlooked with 

the dawn of the age of small molecule antibiotics137. Of these metals, silver is currently 

the most widespread in antimicrobial applications, yet copper has also garnered 

significant interest for antimicrobial properties. Metallic copper surfaces have been 

widely examined for their contact killing abilities, which were proven effective against a 

variety of bacterial species138. When investigated as a coating for surfaces, copper and 

copper alloys showed significant bacterial inhibition against both E. coli and MRSA at 

various bacterial loads139. However, like silver, copper has limited solubility in aqueous 

environments, thus limiting the ability to elute active Cu+/Cu2+ into a wound site. 

Mixtures of CuO and AgxO present the potential advantage of modulating release rate of 

Ag+ ions into solution, because CuO is effectively insoluble in water. This would allow 

facile synthesis of mixed AgxO/CuO layers, in which the relative ratios of the 

components are varied to tune elution properties. Noting the elution profiles of 
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substances used is important to maintain the antimicrobial activity of the coatings 

themselves, as well as eliminate any potential toxicity induced by elution that occurs too 

quickly140-141. 

The goal of the following studies was to utilize AgxO in similar ways to those 

previously tested in an attempt to widen the potential market for AgxO coating 

technology, as well as further understand and utilize the ability to alter the elution 

profiles of formed coatings. To do this, coatings were embedded in silk fibroin proteins, 

applied to standard bandages, and combined with CuO to test and compare efficacy to 

standard AgxO coatings in similar assays as those completed in previous chapters. 

Materials and Methods 
 

Generation of silk films and silk film deposition. To extract silk proteins, raw 

cocoons were cut and washed, rinsed with sodium carbonate, and boiled, as reported 

previously124. Extracted fibers are rinsed multiple times and dried in an oven. The dried 

fibers are dissolved in LiBr solution and subjected to dialysis against water to further 

separate the silk fiber proteins. The sample is then centrifuged, and concentration 

determined by dry weight analysis128. 

To create impregnated films, the desired amount of solid AgO or Rhodamine 6G 

was added to silk solution and dissolved by mixing. Aliquots of these solutions were 

added to individual wells of 96-well plates and were dried using ambient airflow in a 

chemical fume hood overnight. The following day, films were twice rinsed with methanol 

to solidify the film and prevent flaking during experimentation. The creation of multi- 

layered films followed the same procedure in sequence. 
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Rhodamine release assay. A specified amount of PBS was added to each of the 

test wells containing silk films, regardless of composition, and the plate was placed in the 

incubator at 37°C for 1 hour. Following incubation, a portion of the PBS solution in each 

well was transferred to a fresh 96-well plate for fluorescence reading. 

Bacterial culturing. Protocol followed is explained in Chapter 2, Materials and 

Methods section labeled ‘Bacterial culturing’. 

Modified minimum inhibitory concentration (mMIC). The modified version of 

the broth micro-dilution assay was used to determine the antimicrobial activity of the 

silver impregnated silk films. This is modified, as silver is not added in solution, but it is 

present in a solid film at the bottom of the well, thus restricting the soluble silver in the 

wells. The modified MIC plates were prepared with AgO-impregnated silk containing 

varying concentrations of AgO in the films (ranging from 0%-0.5% by weight). To each 

coated well, 200µL of bacterial culture (0.5x105 CFU/mL), or blank LB broth was added, 
 

providing test replicates as well as controls for each concentration of AgO film. Plates 

were covered and placed in the incubator at 37°C overnight. Following incubation, plates 

were removed from the incubator and photographed before 100µL was transferred from 

each well into a fresh 96 well plate. Absorbance measurements were performed on these 

100µL aliquots at 600nm using a Molecular Devices Spectramax M5. An additional 

aliquot of 50µL was removed from selected wells from the original plate and spread onto 

LB agar plates. These LB agar plates were incubated at 37°C overnight and colonies were 

counted following incubation to assess growth and investigate bactericidal vs. 

bacteriostatic activity. 
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Bacterial growth curve analysis. Protocol followed is explained in Chapter 2, 

Materials and Methods section labeled ‘Bacterial culturing’. 

ZOI. Protocol followed is explained in Chapter 2, Materials and Methods section 

labeled ‘Bacterial culturing’. 

Results 
 

Silk biopolymers as an antibacterial delivery platform. In order to examine the 

ability of silk films to deliver silver oxide to kill bacteria, a fluorescent reporter, 

Rhodamine 6G, was used to assay release from silk biopolymer films deposited in 96- 

well plates. The films were constructed in a dual-layer format such that only one of the 

two layers (top, bottom) contained the Rhodamine. This experiment was designed to 

determine whether the Rhodamine release was affected by the exposure to the aqueous 

environment and/or the presence of an additional blocking layer of silk biopolymer. 

Results of this experiment, shown in Figure 19, show that there was greater release of 

Rhodamine into the aqueous milieu when the Rhodamine-containing layer was the top 

layer of the film. When the Rhodamine-containing layer was concealed by an undoped 

silk biopolymer layer, release still occurred, but to a lesser extent. 

Previous work has demonstrated that silver oxide is an effective antimicrobial 

agent when applied as a surface coating to titanium; this coating component has been 

extended to several alternative delivery methods. Figure 20 shows a sample 96-well plate 

containing AgO-impregnated silk films at varying AgO concentrations. This image 

shows that the films are relatively homogeneous at the macroscopic level with coloration 

changes as AgO concentrations increase. A modified MIC (mMIC) for these types of 
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films was determined by incubating the films with bacterial cultures of either S. aureus 

(Figure 21) or E. coli (data not shown). The mMIC for S. aureus was found to be 

somewhat variable, ranging between 0.1% - 0.25% AgO. The results for E. coli, however, 

are confounded by inherent antimicrobial activity from the silk, either from the 

biopolymer itself or remnants of the purification process. 

In addition to determining mMICs for AgO-impregnated silk films, films 

impregnated with silver nanoparticles or films coated with AgO via reactive sputtering 

were also examined. Figure 22 shows the results of the zone of inhibition assay using silk 

films with each of the previously described compositions. Universally, consistent with 

the mMIC findings, the measured ZOI for all compositions was larger against E. coli than 

S. aureus. However, in both cases, the sputter-coated AgO performed similarly to 

impregnated silver nanoparticles, both of which performed slightly better than AgO- 

impregnated films. 

A comparison of these materials was also performed as a bacterial growth curve 

analysis, as described above. The results show that all three silver/silk material forms 

inhibited bacterial growth for both S. aureus and E. coli (Figure 23). As presented 

previously, in this experimental environment, E. coli was showed greater inhibition 

compared to S. aureus in both experimental duplicates as well as across impregnated 

AgO, silver nanoparticles, and AgxO sputtered silk. In the cases of both the S. aureus and 

E. coli, growth inhibition occurred with all silver-containing discs, although the Gram- 
 

positive S. aureus experienced the most antibacterial activity from the silver-sputtered 

silk discs. 
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Application of coatings formed by reactive sputtering applied to bandages. In 

an effort to assess the antimicrobial properties of silver-sputtered bandages as compared 

to standard, commercially available bandages (both antibiotic-coated and regular, 

uncoated) zone of inhibition assays were performed with varying bacterial species 

(Figure 24). In the cases of both the S. aureus and E. coli, uncoated bandages showed no 

inhibition to bacterial growth on the surface, while the antibiotic-coated bandages showed 

little to no growth. Although growth on the E. coli plate was less dense than S. aureus, a 

zone of inhibition of decent size was present on each plate. In addition to surface 

bacterial testing, solution kinetics testing was also performed to test the efficiency of 

elution over a length of time (Figure 25). In the case of each bacterial species tested, the 

test tubes containing AgO-coated bandages showed no increase in growth throughout the 

length of the experiment, while the control, standard bandages, and antibiotic-coated 

bandages all showed rapid growth increases. In all cases, there was little to no difference 

between the control, regular, and antibiotic-coatings. 

Evaluation of AgxO/CuO films as next-generation antimicrobial coatings. A 

series of AgxO/CuO coatings in which the AgxO/CuO ratio was varied (Table 2), 

deposited on high-density polyethylene (HDPE). These different film compositions were 

tested for antimicrobial activity be performing zone of inhibition assays (Figure 26). All 

compositions tested induced a zone of inhibition against S. aureus and E. coli, with the 

exception of composition #71 (10 Ag, 70 Cu). These coatings were also tested in growth 

curve experiments (Figure 27). In these experiments, the most effective compositions at 

inhibiting bacterial growth were the mixtures that contained AgxO as the major 

component. Composition #71 was ineffective against both bacterial species tested, and 
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composition #73 was more effective against S. aureus than E. coli, yet not as effective as 

samples with higher silver oxide concentration. 

Discussion 
 

Overall, the experimental results presented show an inhibition of growth in 

culture and on surfaces with various application methods of AgO (impregnated or 

sputtered, etc.) as well as AgxO/CuO mixtures. The flexibility of surfaces on which AgxO 

coatings and coating mixtures can be applied allows for a great number of future possible 

applications. 

Biomaterials provide a natural and biodegradable platform to deliver silver to 

surface wounds, preventing bacteria from infecting the wound. Using films composed of 

Mori silk provided a flexible, biodegradable material to deliver silver and potentially 

other compounds. While the biopolymer films had exhibited favorable properties for 

silver delivery, the process involved in creating the films, as well as materials properties 

changes upon AgxO deposition by sputtering, may affect the future range of applications. 

Specifically, the silk biopolymer films became very brittle after sputtering deposition, 

which would limit the ways these materials could be molded for final application. In 

addition, due to the poor solubility of AgO in water142, attaining a uniform distribution of 

AgO in impregnated films was more difficult than anticipated (final results shown in 

Figure 20). Whether or not universal distribution of AgO solid could occur in a different 

concentration of silk solution was not investigated. While this non-uniform distribution 

did not appear to affect the activity in our experiments, it may present challenges and 

variability in behavior when scaled up. In the experiments performed, however, this 
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heterogeneous distribution was likely a result of the properties of silver oxide, as our 

experiments with Rhodamine resulted in a more uniform coating and differential release 

based on the multilayer structure (Figure 19). Rhodamine release was observed in both 

cases, but the films that contained Rhodamine in the top layer, exhibited higher 

fluorescence than those in which Rhodamine was embedded in the bottom layer. This 

indicates that Rhodamine release from the lower layer was obstructed by the presence of 

the second layer of silk, as expected. Using this methodology, we propose it would be 

possible to deliver different amounts of AgO and control the rate of release, providing a 

longer-lasting antimicrobial effect. Additionally, the experiments performed were a 

single time point analysis, so determining the kinetics of release in these systems is also 

of interest for future experiments. 

The minimum inhibitory concentrations were determined for both S. aureus 

(Figure 21) and E. coli using AgO-embedded silks deposited on the surface of a 96-well 

plate. The value for S. aureus proved to be more difficult to determine than E. coli. This 

is consistent with previous observations in which higher concentrations of AgO were 

required for activity against S. aureus compared to E. coli. The heterogeneity in the AgO- 

impregnated silk films may result in batch-to-batch differences, resulting in differential 

release of AgO into the wells, and thus potentially delivering below the concentration 

required for activity in some replicates. Testing on bacteria-loaded surfaces (Figure 22) 

and in solution (Figure 23) proved that in the majority of cases, AgO-impregnated silk 

films provided equal efficacy as 0.1% silver nanoparticles, and 150nm AgO sputtered silk 

films. In both solid and liquid culture, S. aureus proved more difficult to inhibit (Figure 

22B, Figure 23B), consistent with our other findings. This held true for the silver 
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nanoparticles as well as the AgxO-sputtered pieces, however the silk impregnated pieces 

showed greater growth reduction than all other test pieces. 

The use of bandages is ubiquitous in the treatment of lesions, abrasions, and other 

wound types. The ability of bandages to aid in wound healing is important in the 

prevention of infection by providing a barrier between the open wound and the 

environment. Many bandages also contain one of more standard small molecule 

antibiotics to aid in infection control, however they are becoming increasingly unable to 

fulfill this task, a new alternative is imperative131. Silver-coated bandages were examined 

for antimicrobial efficacy on solid media (Figure 24) and in solution (Figure 25) and 

compared to traditional, commercially available antibiotic-loaded bandages, as well as 

standard bandages. Although the size of the bandages used in ZOI tests were somewhat 

variable, it is evident from the data that the AgO-coated bandages were far superior in 

inhibiting growth of S. aureus, shown in Figure 24A. The commercially available 

antibiotic bandages were completely ineffective at inhibiting S. aureus growth, providing 

a dramatic proof of concept in the potential efficacy of these coatings for bandage 

applications. This trend can also be seen for E. coli in Figure 24B, although the initial 

results are inconclusive due to the incomplete growth of a bacterial lawn on the plates. 
 

The solution growth kinetics performed yielded similar results, as the AgO-sputtered 

bandages showed a greater growth inhibition than the standard uncoated bandages or 

commercially available antibiotic coated bandages. Further testing is necessary to 

determine a sufficient the dose needed to inhibit bacterial growth at the wound site, as 

well as the effects of those dosages to the immediate wound area, surrounding skin, and 

overall wound healing process. 
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While exploring alternative ways to control the elution rate from AgO coatings, 

mixing AgO with other known antimicrobials was proposed. AgO/CuO mixtures were 

sputtered onto plastic substrates and tested as an alternative coating material. The 

rationale was that the CuO is practically insoluble in water, and thereby could provide a 

means of modulating the release of Ag+ from AgO-containing surfaces. ZOI testing was 

performed on each of the six mixtures prepared, using both E. coli (Figure 26A) and S. 
 

aureus (Figure 26B). All mixtures showed similar efficacy in producing a ZOI, except for 
 

#71, the composition containing the least AgO in the mixture. Solution testing was 

performed on each of the mixtures as well, against both E. coli (Figures 287A and 27B) 

and S. aureus (Figures 27C and 27D). In these experiments, E. coli growth was inhibited 

by each of the mixtures, while S. aureus only showed complete inhibition with mixtures 

containing at least 30 Ag. From these results, it can be deduced that the AgO portion of 

the mixtures provided the majority of antimicrobial activity in these cases, and CuO 

appears to serve as a viable method to control the elution rate of Ag+. Future experiments 

will focus on quantifying the release rates of Ag into solution from different AgO/CuO 

mixtures, as well as determining the ability of the AgO/CuO films to prevent adhesion to 

surfaces before and after all Ag+ is released into solution. 

Conclusion 
 

In these studies, various delivery methods of AgO were examined, as well as CuO 

as an additive to AgO sputtered coatings as a way to control the elution rate of coatings 

from the surface. Silk biofilms were used as a delivery method for impregnated AgO 

solid, with future application to surface punctures and wounds as an alternative to 

traditional bandages. In addition, AgO-coated bandages exhibited a greater antimicrobial 
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effect than that of the standard, commercially available antibiotic coated bandages, 

indicating that they may become a viable alternative to standard bandages. Finally, 

adding CuO to previously tested AgO formulations did not significantly effect the ability 

to inhibit bacterial growth, however growth inhibition was dependent on AgO:CuO ratio 

in the films. This is thought to be a result of CuO modulating the release rate of the AgO. 

Finally, using AgO/CuO mixtures would make the technology more affordable, as Cu is a 

less expensive material than Ag. In total, these varied applications and materials 

demonstrate the flexibility of AgO coatings produced by reactive sputtering for a variety 

of biomedical applications. 
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Figure 18. Secondary structure of one B. mori silk fibroin chain; (Gly-Ala-Gly-Ala-Gly- 
Ser) amino acid repeat units that self-assemble into antiparallel beta sheets. Figure 
modified143-144. 
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Figure 19. Rhodamine release comparison form multi-layered silk films. Rhodamine 
fluorescence from the supernatant collected after exposure to multi-layered silk films. 
Fluorescence measurements were taken of films composed of two layers of pure silk, a 
layer of Rhodamine-impregnated silk on top of a layer of pure silk, and a layer of pure 
silk over a layer of Rhodamine-impregnated silk. n=16. 
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Figure 20. Silk films deposited on the bottom of 96 well plate. Various concentrations of 
silk/silver were deposited on the bottom of individual wells of a 96 well plate. 
Concentrations are outlined in to highlight variations in silver concentration. Red – 0% 
AgO, orange – 0.001% AgO, yellow – 0.005% AgO, green – 0.01% AgO, light blue – 
0.1% AgO, dark blue – 0.25% AgO, purple – 0.35% AgO, pink – 0.5% AgO. 
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Figure 21. Modified minimum inhibitory concentrations for S. aureus. All MIC 
concentrations were confirmed 2-4 times in varying replicates, and replicates are shown 
as means with standard deviation over all wells tested containing films with the same 
concentration of impregnated AgO. 
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Figure 22. Zone of inhibition analysis for various silk films containing silver. Zone of 
inhibition for (a) E. coli and (b) S. aureus. Test discs containing 0% AgO (pure silk 
control), 0.5% AgO (impregnated), 0.1% silver nanoparticles (impregnated), or 150nm 
AgxO sputtered surface coating. Zone of inhibition measured for E. coli: exhibited a 1.6 
cm zone for 0.5% AgO, 1.8 cm zone for 0.1% silver nanoparticles, 1.9 cm zone for the 
AgxO sputtered surface, and no zone for the 0% AgO control. Zone of inhibition 
measured for S. aureus: 1 cm zone for 0.5% AgO, 1.5 cm outer zone for 0.1% silver 
nanoparticles, 1.6 cm outer zone for the AgxO sputtered surface, and no zone for 0% AgO 
control. All test discs are 0.635 cm diameter. Plates were seeded with a known 
concentration of bacteria, discs were applied to the surface and the plates were grown at 
37°C overnight before measurement and imaging. 
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Figure 23. Growth curve analysis in solution. Silk film discs containing either 0% AgO, 
0.5% AgO (green), 0.1% silver nanoparticles (orange), or AgxO 150nm sputtered (purple) 
discs were placed into (a) E. coli (starting concentration of 1.25x106 CFU/mL), (b) S. 
aureus (starting concentration of 1.17x105 CFU/mL). Data are color coded according to 
replicates. 
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Figure 24. Zone of inhibition testing for various bandage types. Zone of inhibition for (a) 
S. aureus and (b) E. coli. Standard, commercially-available uncoated bandages, antibiotic 
coated (Polymyxin B Sulfate 10,000 units and Bacitracin Zinc 500 units per gram), and 
AgxO sputtered bandages were tested. Plates were seeded with a known concentration of 
bacteria, bandages were applied to the surface and the plates were grown at 37°C 
overnight before imaging. 
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Figure 25. Growth curve analysis of bandages in solution. Standard uncoated, antibiotic- 
impregnated (Polymyxin B Sulfate 10,000 units and Bacitracin Zinc 500 units per gram), 
and AgxO sputtered bandages were tested for antimicrobial efficacy in solution. Strains 
examined were: (a) S. aureus (starting concentration 1.13x107 CFU/mL), (b) E. coli 
(starting concentration 1.51x108 CFU/mL), (c) P. aeruginosa (starting concentration 
1.06x108 CFU/mL), and (d) K. pneumoniae (starting concentration 1.49x107 CFU/mL). 
All test bandages were cut to approximately the same dimensions to minimize potential 
differences in dosing. 
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Figure 26. Zone of inhibition testing for silver oxide/copper mixtures. Zone of inhibition 
for (a) E. coli and (b) S. aureus. (A) exhibited no zone at 71, 1 cm zone at 73, 0.9 cm 
zone at 75, 1 cm zone at 77, 1 cm zone at 81, and 0.8 cm zone at 79. (B) exhibited no 
zone at 1, 1 cm zone at 73, 0.9 cm zone at 75, 1 cm zone at 77, 1 cm zone at 81, and 0.9 
cm zone at 79. Concentrations for each composition are listed in Table 2. 



www.manaraa.com

  

 
 

Figure 27. Growth curve analysis of copper oxide/silver oxide mixtures. Coatings were 
deposited on high-density polyethylene (HDPE). Uncoated pieces were used as the 
control. Pieces were tested against (a, b) E. coli (starting concentrations 1.47x106 

CFU/mL and 1.81x106 CFU/mL, respectively) and (c, d) S. aureus (starting 
concentrations 1.24x105 CFU/mL and 1.47x105 CFU/mL, respectively). All test pieces 
were squares approximately sized 3/16” per side. Coating composition varied from 
sample to sample, and is described in Table 2. The numbers in the legend correspond to 
the sample numbers in Table 2. 

 
 
 
 

Table 2. 
 

AgxO/CuO Coating Compositions. 

Sample Number Composition 
 

71 
73 
75 
77 
79 
 81 

10 Ag, 70 Cu 
20 Ag, 60 Cu 
30 Ag, 60 Cu 
40 Ag, 50 Cu 
50 Ag, 40 Cu 
60 Ag, 30 Cu 



www.manaraa.com

  

References 
 
 

[1]   WHO Antimicrobial Resistance Global Report; 2014. 
 

[2] Yoneyama, H.; Katsumata, R., Antibiotic resistance in bacteria and its future for 
novel antibiotic development. Biosci Biotechnol Biochem 2006, 70 (5), 1060-75. 

 
[3]   Abraham, E. P.; Chain, E. B., An enzyme from bacteria able to destroy penicillin. 

Nature 1939, 146 (3713), 837. 
 

[4] Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K.; Wertheim, H. F.; Sumpradit, 
N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; 
Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, 
F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. 
D.; Brown, E. D.; Cars, O., Antibiotic resistance-the need for global solutions. 
Lancet Infect Dis 2013, 13 (12), 1057-98. 

 
[5] CDC Antibiotic resistance threats in the United States, 2013; US Centers for Disease 

Control and Prevention: 2013. 
 

[6] Howard, D.; Rask, K., The impact on resistance on antibiotic demand in patients 
with ear infections. In Battling resistance to antibiotics and pesticides: an 
economic approach, RFF Press: Washington DC, 2002; pp 119-133. 

 
[7]   Tran, J. H.; Jacoby, G. A., Mechanism of plasmid-mediated quinolone resistance. 

Proc Natl Acad Sci U S A 2002, 99 (8), 5638-42. 
 

[8] Meredith, H. R.; Srimani, J. K.; Lee, A. J.; Lopatkin, A. J.; You, L., Collective 
antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol 
2015, 11 (3), 182-8. 

 
[9] Lentino, J. R., Prosthetic joint infections: bane of orthopedists, challenge for 

infectious disease specialists. Clin Infect Dis 2003, 36 (9), 1157-61. 
 

[10] Sweidan, M.; Zhang, Y.; Harvey, K.; Yang, Y.; Shen, X.; Yao, K., Proceedings of 
the 2nd national workshop on rational use of antibiotics in China. Beijing: 
Beijing Children's Hospital 2005. 

 
[11] Giguère, S., Antimicrobial Drug Action and Interaction. In Antimicrobial Therapy 

in Veterinary Medicine, Fifth Edition, Giguère, S.; Prescott, J. F.; Dowling, P. 
M., Eds. John Wiley & Sons, Inc.: Hoboken, NJ, 2013. 

 
[12] Woodward, C., Animal antibiotics under tougher United States scrutiny as 

consensus grows on "superbug" risk to humans. CMAJ 2010, 182 (11), E513-4. 
 

[13] Allen, H. K., Antibiotic resistance gene discovery in food-producing animals. Curr 
Opin Microbiol 2014, 19, 25-9. 



www.manaraa.com

  

[14] Jakobsen, L.; Spangholm, D. J.; Pedersen, K.; Jensen, L. B.; Emborg, H. D.; 
Agerso, Y.; Aarestrup, F. M.; Hammerum, A. M.; Frimodt-Moller, N., Broiler 
chickens, broiler chicken meat, pigs and pork as sources of ExPEC related 
virulence genes and resistance in Escherichia coli isolates from community- 
dwelling humans and UTI patients. Int J Food Microbiol 2010, 142 (1-2), 
264-72. 

 
[15] Marshall, B. M.; Levy, S. B., Food animals and antimicrobials: impacts on human 

health. Clin Microbiol Rev 2011, 24 (4), 718-33. 
 

[16] Sorensen, T. L.; Blom, M.; Monnet, D. L.; Frimodt-Moller, N.; Poulsen, R. L.; 
Espersen, F., Transient intestinal carriage after ingestion of antibiotic-resistant 
Enterococcus faecium from chicken and pork. N Engl J Med 2001, 345 (16), 
1161-6. 

 
[17]  Kuehn, B. M., Some progress in effort to reduce hospital-acquired infections. JAMA 

2014, 311 (15), 1488. 
 

[18] CDC National and State Healthcare Associated Infections; United States Centers 
for Disease Control and Prevention: 2016. 

 
[19] Berbari, E. F.; Hanssen, A. D.; Duffy, M. C.; Steckelberg, J. M.; Ilstrup, D. M.; 

Harmsen, W. S.; Osmon, D. R., Risk factors for prosthetic joint infection: case- 
control study. Clin Infect Dis 1998, 27 (5), 1247-54. 

 
[20] Petty, W.; Spanier, S.; Shuster, J. J.; Silverthorne, C., The influence of skeletal 

implants on incidence of infection. Experiments in a canine model. J Bone Joint 
Surg Am 1985, 67 (8), 1236-44. 

 
[21]  Harris, L. G.; Richards, R. G., Staphylococci and implant surfaces: a review. Injury 

2006, 37 Suppl 2, S3-14. 
 

[22] Mah, T. F.; Pitts, B.; Pellock, B.; Walker, G. C.; Stewart, P. S.; O'Toole, G. A., A 
genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 
2003, 426 (6964), 306-10. 

 
[23] Hoyle, B. D.; Costerton, J. W., Bacterial resistance to antibiotics: the role of 

biofilms. Prog Drug Res 1991, 37, 91-105. 
 

[24] Wolcott, R. D.; Rhoads, D. D.; Bennett, M. E.; Wolcott, B. M.; Gogokhia, L.; 
Costerton, J. W.; Dowd, S. E., Chronic wounds and the medical biofilm 
paradigm. J Wound Care 2010, 19 (2), 45-6, 48-50, 52-3. 

 
[25] Gallow, J.; Holinka, M.; Moucha, C. S., Antibacterial Surface Treatment for 

Orthopedic Implants. International Journal of Molecular Sciences 2014, 15, 
13849-13880. 



www.manaraa.com

  

[26] Zhao, L.; Chu, P. K.; Zhang, Y.; Wu, Z., Antibacterial coatings on titanium 
implants. J Biomed Mater Res B Appl Biomater 2009, 91 (1), 470-80. 

 
[27] Silver, S.; Phung le, T.; Silver, G., Silver as biocides in burn and wound dressings 

and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 2006, 
33 (7), 627-34. 

 
[28] Maillard, J. Y.; Hartemann, P., Silver as an antimicrobial: facts and gaps in 

knowledge. Crit Rev Microbiol 2013, 39 (4), 373-83. 
 

[29]  Alexander, J. W., History of the medical use of silver. Surg Infect (Larchmt) 2009, 
10 (3), 289-92. 

 
[30]  Jelenko, C. Silver nitrate resistant E. coli: report of case; 1969; pp 296-299. 

 
[31] Haefeli, C.; Franklin, C.; Hardy, K., Plasmid-determined silver resistance in 

Pseudomonas stutzeri isolated from a silver mine. Journal of Bacteriology 1984, 
158, 389-392. 

 
[32] Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R., Antimicrobial 

silver: uses, toxicity and potential for resistance. Biometals 2013, 26 (4), 609-21. 
 

[33]  Edwards-Jones, V., The benefits of silver in hygiene, personal care and healthcare. 
Lett Appl Microbiol 2009, 49 (2), 147-52. 

 
[34] Percival, S. L.; Slone, W.; Linton, S.; Okel, T.; Corum, L.; Thomas, J. G., The 

antimicrobial efficacy of a silver alginate dressing against a broad spectrum of 
clinically relevant wound isolates. Int Wound J 2011, 8 (3), 237-43. 

 
[35] Chernousova, S.; Epple, M., Silver as antibacterial agent: ion, nanoparticle, and 

metal. Angew Chem Int Ed Engl 2013, 52 (6), 1636-53. 
 

[36] Lansdown, A. B., Critical observations on the neurotoxicity of silver. Crit Rev 
Toxicol 2007, 37 (3), 237-50. 

 
[37] Wan, A. T.; Conyers, R. A.; Coombs, C. J.; Masterton, J. P., Determination of silver 

in blood, urine, and tissues of volunteers and burn patients. Clin Chem 1991, 
37 (10 Pt 1), 1683-7. 

 
[38] Bleehen, S. S.; Gould, D. J.; Harrington, C. I.; Durrant, T. E.; Slater, D. N.; 

Underwood, J. C., Occupational argyria; light and electron microscopic studies 
and X-ray microanalysis. Br J Dermatol 1981, 104 (1), 19-26. 

 
[39]  Chung, I. S.; Lee, M. Y.; Shin, D. H.; Jung, H. R., Three systemic argyria cases 

after ingestion of colloidal silver solution. Int J Dermatol 2010, 49 (10), 1175-7. 



www.manaraa.com

  

[40] Glehr, M.; Leithner, A.; Friesenbichler, J.; Goessler, W.; Avian, A.; Andreou, D.; 
Maurer-Ertl, W.; Windhager, R.; Tunn, P. U., Argyria following the use of 
silver-coated megaprostheses: no association between the development of local 
argyria and elevated silver levels. Bone Joint J 2013, 95-B (7), 988-92. 

 
[41]  Lansdown, A. B.; Williams, A., How safe is silver in wound care? J Wound Care 

2004, 13 (4), 131-6. 
 

[42] Zheng, W.; Aschner, M.; Ghersi-Egea, J. F., Brain barrier systems: a new frontier in 
metal neurotoxicological research. Toxicol Appl Pharmacol 2003, 192 (1), 1-11. 

 
[43] Zheng, W., Toxicology of choroid plexus: special reference to metal-induced 

neurotoxicities. Microsc Res Tech 2001, 52 (1), 89-103. 
 

[44] Goebel, H. H.; Muller, J., Ultrastructural observations on silver deposition in the 
choroid plexus of a patient with argyria. Acta Neuropathol 1973, 26 (3), 247-51. 

 
[45] Klemm, P.; Vejborg, R. M.; Hancock, V., Prevention of bacterial adhesion. Appl 

Microbiol Biotechnol 2010, 88 (2), 451-9. 
 

[46] Fordham, W. R.; Redmond, S.; Westerland, A.; Cortes, E. G.; Walker, C.; 
Gallagher, C.; Medina, C. J.; Waecther, F.; Lunk, C.; Ostrum, R. F.; Caputo, G. 
A.; Hettinger, J. D.; Krchnavek, R. R., Silver as a Bactericidal Coating for 
Biomedical Implants. Surface & Coatings Technology 2014, 253, 52-57. 

 
[47] Pritchard, E. M.; Szybala, C.; Boison, D.; Kaplan, D. L., Silk fibroin encapsulated 

powder reservoirs for sustained release of adenosine. J Control Release 2010, 
144 (2), 159-67. 

 
[48] Cameron, D. Antimicrobial Resistance: Tackling a crisis for the health and wealth 

of nations; 2014. 
 

[49] Suresh, A. K.; Doktycz, M. J.; Wang, W.; Moon, J. W.; Gu, B.; Meyer, H. M., 3rd; 
Hensley, D. K.; Allison, D. P.; Phelps, T. J.; Pelletier, D. A., Monodispersed 
biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using 
the gamma-proteobacterium, Shewanella oneidensis. Acta Biomater 2011, 
7 (12), 4253-8. 

 
[50] Jain, J.; Arora, S.; Rajwade, J. M.; Omray, P.; Khandelwal, S.; Paknikar, K. M., 

Silver nanoparticles in therapeutics: development of an antimicrobial gel 
formulation for topical use. Mol Pharm 2009, 6 (5), 1388-401. 

 
[51] Panacek, A.; Kolar, M.; Vecerova, R.; Prucek, R.; Soukupova, J.; Krystof, V.; 

Hamal, P.; Zboril, R.; Kvitek, L., Antifungal activity of silver nanoparticles 
against Candida spp. Biomaterials 2009, 30 (31), 6333-40. 



www.manaraa.com

  

[52] Hwang, M. G.; Katayama, H.; Ohgaki, S., Inactivation of Legionella pneumophila 
and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver 
cations. Water Res 2007, 41 (18), 4097-104. 

 
[53] Russell, A. D.; Hugo, W. B., Antimicrobial activity and action of silver. Prog Med 

Chem 1994, 31, 351-70. 
 

[54] Chole, R. A.; Hubbell, R. N., Antimicrobial activity of silastic tympanostomy tubes 
impregnated with silver oxide. A double-blind randomized multicenter trial. 
Arch Otolaryngol Head Neck Surg 1995, 121 (5), 562-5. 

 
[55] Schaeffer, A. J.; Story, K. O.; Johnson, S. M., Effect of silver 

oxide/trichloroisocyanuric acid antimicrobial urinary drainage system on 
catheter-associated bacteriuria. J Urol 1988, 139 (1), 69-73. 

 
[56] Tripathi, S.; Mehrotra, G. K.; Dutta, P. K., Chitosan–silver oxide nanocomposite 

film: Preparation and antimicrobial activity. Bulletin of Materials Science 2011, 
34 (1), 29-35. 

 
[57] Hettinger, J., Silver oxide coatings with high silver-ion elution rates for bactericidal 

applications. unpublished. 
 

[58] Anderl, J. N.; Franklin, M. J.; Stewart, P. S., Role of antibiotic penetration 
limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and 
ciprofloxacin. Antimicrob Agents Chemother 2000, 44 (7), 1818-24. 

 
[59] Demidova, T. N.; Hamblin, M. R., Effect of cell-photosensitizer binding and cell 

density on microbial photoinactivation. Antimicrob Agents Chemother 2005, 
49 (6), 2329-35. 

 
[60] Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. 

M., Programming cells by multiplex genome engineering and accelerated 
evolution. Nature 2009, 460 (7257), 894-8. 

 
[61] Sambale, F.; Wagner, S.; Stahl, F.; Khaydarov, R. R.; Scheper, T.; Bahnemann, D., 

Investigations of the Toxic Effect of Silver Nanoparticles on 
Mammalian Cell Lines. Journal of Nanomaterials 2015, 2015, 1-9. 

 
[62] Bockstael, K.; Aerschot, A. V., Antimicrobial Resistance in Bacteria. Central 

European Journal of Medicine 2008, 4 (2), 141-155. 
 

[63] Duran, N.; Duran, M.; de Jesus, M. B.; Seabra, A. B.; Favaro, W. J.; Nakazato, G., 
Silver nanoparticles: A new view on mechanistic aspects on antimicrobial 
activity. Nanomedicine 2016, 12 (3), 789-99. 



www.manaraa.com

  

[64] Lara, H. H. L.; Ayala-Núñez, N. V.; del Carmen Ixtepan Turrent, L.; Rodríguez 
Padilla, C., Bactericidal effect of silver nanoparticles against multidrug-resistant 
bacteria. World Journal of Microbiology and Biotechnology 2010, 26 (4), 
615-621. 

 
[65] Markowska, K.; Grudniak, A. M.; Wolska, K. I., Silver nanoparticles as an 

alternative strategy against bacterial biofilms. Acta Biochim Pol 2013, 60 (4), 
523-30. 

 
[66] Singh, R.; Shedbalkar, U. U.; Wadhwani, S. A.; Chopade, B. A., Bacteriagenic 

silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol 
Biotechnol 2015, 99 (11), 4579-93. 

 
[67] Chopra, I., The increasing use of silver-based products as antimicrobial agents: a 

useful development or a cause for concern? J Antimicrob Chemother 2007, 
59 (4), 587-90. 

 
[68] van de Belt, H.; Neut, D.; Schenk, W.; van Horn, J. R.; van Der Mei, H. C.; 

Busscher, H. J., Staphylococcus aureus biofilm formation on different 
gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials 2001, 
22 (12), 1607-11. 

 
[69] Hendriks, J. G.; Neut, D.; van Horn, J. R.; van der Mei, H. C.; Busscher, H. J., 

Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone 
cements. J Bone Joint Surg Br 2005, 87 (2), 272-6. 

 
[70] Miola, M.; Fucale, G.; Maina, G.; Verne, E., Antibacterial and bioactive composite 

bone cements containing surface silver-doped glass particles. Biomed Mater 
2015, 10 (5), 055014. 

 
[71] Hebeish, A.; El-Rafie, M. H.; El-Sheikh, M. A.; Seleem, A. A.; El-Naggar, M. E., 

Antimicrobial wound dressing and anti-inflammatory efficacy of silver 
nanoparticles. Int J Biol Macromol 2014, 65, 509-15. 

 
[72] Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of 

antimicrobials. Biotechnol Adv 2009, 27 (1), 76-83. 
 

[73] Amin, Y. M.; Hawas, A. M.; El-Batal, A. I.; Hassan, S. H. M.; Elsayed, M. E., 
Evaluation of Acute and Subchronic Toxicity of Silver Nanoparticles in Normal 
and Irradiated Animals. British Journal of Pharmacology and Toxicology 2015, 
6 (2), 22-38. 

 
[74] Maneewattanapinyo, P.; Banlunara, W.; Thammacharoen, C.; Ekgasit, S.; 

Kaewamatawong, T., An evaluation of acute toxicity of colloidal silver 
nanoparticles. J Vet Med Sci 2011, 73 (11), 1417-23. 



www.manaraa.com

  

[75] Retchkiman-Schabes, P. S.; Canizal, G.; Becerra-Herrera, R.; Zorrilla, C.; Liu, 
H.B.; Ascencio, J. A., Biosynthesis and characterization of Ti/Ni bimetallic 
nanoparticles. Optical Materials 2006, 29, 95-99. 

 
[76] Gu, H.; Ho, P. L.; Tong, E.; Wang, L.; Hu, B., Presenting vancomycin on 

nanoparticles to enhance antimicrobial activities. Nano Letters 2003, 3 (9), 
1261-1263. 

 
[77] Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G. K., Alginate nanoparticles as 

antituberculosis drug carriers: formulation development, pharmacokinetics and 
therapeutic potential. Indian J Chest Dis Allied Sci 2006, 48 (3), 171-6. 

 
[78] Suresh, A. K.; Pelletier, D. A.; Wang, W.; Moon, J. W.; Gu, B.; Mortensen, N. P.; 

Allison, D. P.; Joy, D. C.; Phelps, T. J.; Doktycz, M. J., Silver nanocrystallites: 
biofabrication using Shewanella oneidensis, and an evaluation of their 
comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci 
Technol 2010, 44 (13), 5210-5. 

 
[79] Hadrup, N.; Lam, H. R., Oral toxicity of silver ions, silver nanoparticles and 

colloidal silver--a review. Regul Toxicol Pharmacol 2014, 68 (1), 1-7. 
 

[80]  Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D.; Choi, B. S.; 
Lim, R.; Chang, H. K.; Chung, Y. H.; Kwon, I. H.; Jeong, J.; Han, B. S.; Yu, I. 
J., Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue 
distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008, 
20 (6), 575-83. 

 
[81]  Damm, C.; Münstedt, H., Kinetic aspects of the silver ion release from 

antimicrobial polyamide/silver nanocomposites. Applied Physics A 2008, 91 (3), 
479-486. 

 
[82] Saidi, I. S.; Biedlingmaier, J. F.; Whelan, P., In vivo resistance to bacterial biofilm 

formation on tympanostomy tubes as a function of tube material. Otolaryngol 
Head Neck Surg 1999, 120 (5), 621-7. 

 
[83]  Agarwal, A.; Weis, T. L.; Schurr, M. J.; Faith, N. G.; Czuprynski, C. J.; McAnulty, 

J. F.; Murphy, C. J.; Abbott, N. L., Surfaces modified with nanometer-thick 
silver-impregnated polymeric films that kill bacteria but support growth of 
mammalian cells. Biomaterials 2010, 31 (4), 680-90. 

 
[84] Roy, M.; Fielding, G. A.; Beyenal, H.; Bandyopadhyay, A.; Bose, S., Mechanical, 

in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped 
hydroxyapatite coating. ACS Appl Mater Interfaces 2012, 4 (3), 1341-9. 

 
[85] Li, B.; Liu, X.; Cao, C.; Dong, Y.; Ding, C., Biological and antibacterial properties 

of plasma sprayed wollastonite/silver coatings. J Biomed Mater Res B Appl 
Biomater 2009, 91 (2), 596-603. 



www.manaraa.com

  

[86] Chen, W.; Liu, Y.; Courtney, H. S.; Bettenga, M.; Agrawal, C. M.; Bumgardner, 
J.D.; Ong, J. L., In vitro anti-bacterial and biological properties of magnetron co- 
sputtered silver-containing hydroxyapatite coating. Biomaterials 2006, 27 (32), 
5512-7. 

 
[87] Eto, S.; Miyamoto, H.; Shobuike, T.; Noda, I.; Akiyama, T.; Tsukamoto, M.; Ueno, 

M.; Someya, S.; Kawano, S.; Sonohata, M.; Mawatari, M., Silver oxide- 
containing hydroxyapatite coating supports osteoblast function and enhances 
implant anchorage strength in rat femur. J Orthop Res 2015, 33 (9), 1391-7. 

 
[88] Gholipourmalekabadi, M.; Nezafati, N.; Hajibaki, L.; Mozafari, M.; Moztarzadeh, 

F.; Hesaraki, S.; Samadikuchaksaraei, A., Detection and qualification of 
optimum antibacterial and cytotoxic activities of silver-doped bioactive glasses. 
IET Nanobiotechnol 2015, 9 (4), 209-14. 

 
[89] Ostrum, R.; Hettinger, J.; Krchnavek, R.; Caputo, G. A. Use of Silver-Containing 

Layers at Implant Surfaces. 2013. 
 

[90] Zhao, G.; Stevens, S. E., Jr., Multiple parameters for the comprehensive evaluation 
of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11 (1), 
27-32. 

 
[91] Bovenkamp, G. L.; Zanzen, U.; Krishna, K. S.; Hormes, J.; Prange, A., X-ray 

absorption near-edge structure (XANES) spectroscopy study of the interaction of 
silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia 
coli. Appl Environ Microbiol 2013, 79 (20), 6385-90. 

 
[92] Tien, D. C.; Tseng, K. H.; Liao, C. Y.; Tsung, T. T., Colloidal silver fabrication 

using the spark discharge system and its antimicrobial effect on Staphylococcus 
aureus. Med Eng Phys 2008, 30 (8), 948-52. 

 
[93] Low, W. L.; Martin, C.; Hill, D. J.; Kenward, M. A., Antimicrobial efficacy of 

silver ions in combination with tea tree oil against Pseudomonas aeruginosa, 
Staphylococcus aureus and Candida albicans. Int J Antimicrob Agents 2011, 
37 (2), 162-5. 

 
[94] Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O., A mechanistic 

study of the antibacterial effect of silver ions on Escherichia coli and 
Staphylococcus aureus. J Biomed Mater Res 2000, 52 (4), 662-8. 

 
[95] Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M., Antibacterial effect of 

silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials 
2000, 16 (6), 452-455. 

 
[96] Babu, R.; Zhang, J.; Beckman, E. J.; Virji, M.; Pasculle, W. A.; Wells, A., 

Antimicrobial activities of silver used as a polymerization catalyst for a wound- 
healing matrix. Biomaterials 2006, 27 (24), 4304-14. 



www.manaraa.com

  

[97] Panacek, A.; Smekalova, M.; Vecerova, R.; Bogdanova, K.; Roderova, M.; Kolar, 
M.; Kilianova, M.; Hradilova, S.; Froning, J. P.; Havrdova, M.; Prucek, R.; 
Zboril, R.; Kvitek, L., Silver nanoparticles strongly enhance and restore 
bactericidal activity of inactive antibiotics against multiresistant 
Enterobacteriaceae. Colloids Surf B Biointerfaces 2016, 142, 392-9. 

 
[98] Brett, D. W., A discussion of silver as an antimicrobial agent: alleviating the 

confusion. Ostomy Wound Manage 2006, 52 (1), 34-41. 
 

[99] Sant, S. B.; Gill, K. S.; Burrell, R. E., Nanostructure, dissolution and morphology 
characteristics of microcidal silver films deposited by magnetron sputtering. 
Acta Biomater 2007, 3 (3), 341-50. 

 
[100] Dale, H.; Hallan, G.; Hallan, G.; Espehaug, B.; Havelin, L. I.; Engesaeter, L. B., 

Increasing risk of revision due to deep infection after hip arthroplasty. Acta 
Orthop 2009, 80 (6), 639-45. 

 
[101] Billings, N.; Birjiniuk, A.; Samad, T. S.; Doyle, P. S.; Ribbeck, K., Material 

properties of biofilms-a review of methods for understanding permeability and 
mechanics. Rep Prog Phys 2015, 78 (3), 036601. 

 
[102] Bjarnsholt, T.; Alhede, M.; Eickhardt-Sørensen, S. R.; Moser, C.; Kühl, M.; Jensen, 

P. O.; Høiby, N., The in vivo biofilm. Trends in Microbiology 2013, September 
2013 (21), 466-474. 

 
[103] Romling, U.; Kjelleberg, S.; Normark, S.; Nyman, L.; Uhlin, B. E.; Akerlund, B., 

Microbial biofilm formation: a need to act. J Intern Med 2014, 276 (2), 98-110. 
 

[104] Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C., From in vitro to in vivo 
models of bacterial biofilm-related infections. Pathogens 2013, 2 (2), 288-356. 

 
[105] Silver, S., Bacterial silver resistance: molecular biology and uses and misuses of 

silver compounds. FEMS Microbiol Rev 2003, 27 (2-3), 341-53. 
 

[106] Randall, C. P.; Gupta, A.; Jackson, N.; Busse, D.; O'Neill, A. J., Silver resistance in 
Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. 
J Antimicrob Chemother 2015, 70 (4), 1037-46. 

 
[107] Olfert, E. D.; Godson, D. L., Humane Endpoints for Infectious Disease Animal 

Models. ILAR Journal 2000, 41 (2), 99-104. 
 

[108] Kaba, S. I.; Egorova, E. M., In vitro studies of the toxic effects of silver 
nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl 2015, 8, 19-29. 

 
[109] Coenye, T.; Nelis, H. J., In vitro and in vivo model systems to study microbial 

biofilm formation. J Microbiol Methods 2010, 83 (2), 89-105. 



www.manaraa.com

  

[110] Olcott, C. T., Experimental Argyrosis: III. Pigmentation of the Eyes of Rats 
Following Ingestion of Silver During Long Periods of Time. Am J Pathol 1947, 
23 (5), 783-91. 

 
[111] Olcott, C. T., Experimental argyrosis; morphologic changes in the experimental 

animal. Am J Pathol 1948, 24 (4), 813-33. 
 

[112] Olcott, C. T., Experimental argyrosis; hypertrophy of the left ventricle of the heart 
in rats ingesting silver salts. AMA Arch Pathol 1950, 49 (2), 138-49. 

 
[113] Olcott, C. T.; Richter, G. W., Experimental argyrosis. VI. Electron microscopic 

study of ingested silver in the kidney of the rat. Lab Invest 1958, 7 (2), 103-9. 
 

[114] Loeschner, K.; Hadrup, N.; Qvortrup, K.; Larsen, A.; Gao, X.; Vogel, U.; 
Mortensen, A.; Lam, H. R.; Larsen, E. H., Distribution of silver in rats following 
28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part 
Fibre Toxicol 2011, 8, 18. 

 
[115] Rungby, J., Experimental argyrosis: ultrastructural localization of silver in rat eye. 

Exp Mol Pathol 1986, 45 (1), 22-30. 
 

[116] Rungby, J.; Danscher, G., Localization of exogenous silver in brain and spinal cord 
of silver exposed rats. Acta Neuropathol 1983, 60 (1-2), 92-8. 

 
[117] Pereira, G., Localization of silver in the spleen of argyric rats by energy dispersive 

X-ray analysis coupled with scanning and transmission electron microscopy. 
Proc. Annu Meet. Electron Microscopy Soc. Am. 1977, 35, 504-505. 

 
[118] van der Zande, M.; Vandebriel, R. J.; Van Doren, E.; Kramer, E.; Herrera Rivera, 

Z.; Serrano-Rojero, C. S.; Gremmer, E. R.; Mast, J.; Peters, R. J.; Hollman, P. 
C.; Hendriksen, P. J.; Marvin, H. J.; Peijnenburg, A. A.; Bouwmeester, H., 
Distribution, elimination, and toxicity of silver nanoparticles and silver ions in 
rats after 28-day oral exposure. ACS Nano 2012, 6 (8), 7427-42. 

 
[119] Walker, F., The deposition of silver in glomerular basement membrane. Virchows 

Arch B Cell Pathol 1972, 11 (1), 90-6. 
 

[120] Walker, F., Experimental argyria: a model for basement membrane studies. Br J 
Exp Pathol 1971, 52 (6), 589-93. 

 
[121] Eaglstein, W. H.; Sullivan, T. P.; Giordano, P. A.; Miskin, B. M., A liquid adhesive 

bandage for the treatment of minor cuts and abrasions. Dermatol Surg 2002, 
28 (3), 263-7. 

 
[122] Colvin, K. M.; Gordon, V. D.; Murakami, K.; Borlee, B. R.; Wozniak, D. J.; Wong, 

G. C.; Parsek, M. R., The pel polysaccharide can serve a structural and 
protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 
2011, 7 (1), e1001264. 



www.manaraa.com

  

[123] Shelke, N. B.; James, R.; Loaurencin, C. T.; Kumbar, S. G., Polysaccharide 
biomaterials for drug delivery and regenerative engineering. Polymers for 
Advanced Technologies 2014,  (25), 448-460. 

 
[124] Hu, X.; Wang, X.; Rnjak, J.; Weiss, A. S.; Kaplan, D. L., Biomaterials derived 

from silk-tropoelastin protein systems. Biomaterials 2010, 31 (32), 8121-31. 
 

[125] Jin, H. J.; Kaplan, D. L., Mechanism of silk processing in insects and spiders. 
Nature 2003, 424 (6952), 1057-61. 

 
[126] Hu, X.; Lu, Q.; Kaplan, D. L.; Cebe, P., Microphase separation controlled beta- 

sheet crystallization kinetics in fibrous proteins. Macromolecules 2009, (42), 
2079-2087. 

 
[127] Hu, X.; Kaplan, D.; Cebe, P., Dynamic protein-water relationships during beta- 

sheet formation. Macromolecules 2008,  (41), 3939-3948. 
 

[128] Hu, X.; Kaplan, D.; Cebe, P., Effect of water on the thermal properties of silk 
fibroin. Thermochim Acta 2007,  (461), 137-144. 

 
[129] Hu, X.; Kaplan, D.; Cebe, P., Determining beta-sheet crystallinity in fibrous 

proteins by thermal analysis and infared spectroscopy. Macromolecules 2006, 
(39), 6161-6170. 

 
[130] Shang, S.; Zhu, L.; Fan, J., Intermolecular interactions between natural 

polysaccharides and silk fibroin protein. Carbohydr Polym 2013, 93 (2), 561-73. 
 

[131] Davis, S. C.; Cazzaniga, A. L.; Eaglstein, W. H.; Mertz, P. M., Over-the-counter 
topical antimicrobials: effective treatments? Arch Dermatol Res 2005, 297 (5), 
190-5. 

 
[132] Leyden, J. J.; Bartelt, N. M., Comparison of topical antibiotic ointments, a wound 

protectant, and antiseptics for the treatment of human blister wounds 
contaminated with Staphylococcus aureus. J Fam Pract 1987, 24 (6), 601-4. 

 
[133] Boonkaew, B.; Kempf, M.; Kimble, R.; Supaphol, P.; Cuttle, L., Antimicrobial 

efficacy of a novel silver hydrogel dressing compared to two common silver 
burn wound dressings: Acticoat and PolyMem Silver((R)). Burns 2014, 40 (1), 
89-96. 

 
[134] Abedini, F.; Ahmadi, A.; Yavari, A.; Hosseini, V.; Mousavi, S., Comparison of 

silver nylon wound dressing and silver sulfadiazine in partial burn wound 
therapy. Int Wound J 2013, 10 (5), 573-8. 

 
[135] Prestes, M. A.; Ribas, C. A.; Ribas Filho, J. M.; Moreira, L. B.; Boldt, A. B.; 

Brustolin, E. V.; Castanho, L. S.; Bernardi, J. A.; Dias, F. C., Wound healing 
using ionic silver dressing and nanocrystalline silver dressing in rats. Acta Cir 
Bras 2012, 27 (11), 761-7. 



www.manaraa.com

  

[136] Lo, S. F.; Chang, C. J.; Hu, W. Y.; Hayter, M.; Chang, Y. T., The effectiveness of 
silver-releasing dressings in the management of non-healing chronic wounds: a 
meta-analysis. J Clin Nurs 2009, 18 (5), 716-28. 

 
[137] Hobman, J. L.; Crossman, L. C., Bacterial antimicrobial metal ion resistance. J 

Med Microbiol 2015, 64 (Pt 5), 471-97. 
 

[138] Grass, G.; Rensing, C.; Solioz, M., Metallic Copper as an Antimicrobial. Applied 
and Enviornmental Microbiology 2011,  (77), 1541-1547. 

 
[139] Kapel, D. The Antimicrobial Metal. http://www.thefreelibrary.com/The+	

antimicrobial+metal%3a+copper+alloy+registration+offers...-a0307185492	
(accessed June 1). 

 
[140] Moseke, C.; Gbureck, U.; Elter, P.; Drechsler, P.; Zoll, A.; Thull, R.; Ewald, A., 

Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med 
2011, 22 (12), 2711-20. 

 
[141] Kumar, R.; Munstedt, H., Silver ion release from antimicrobial polyamide/silver 

composites. Biomaterials 2005, 26 (14), 2081-8. 
 

[142] Haynes, W. M., CRC Handbook of Chemistry and Physics: A ready-reference book 
of chemical and physical data. CRC Press: Boca Raton, 2009. 

 
[143] Murphy, A. R.; St John, P.; Kaplan, D. L., Modification of silk fibroin using 

diazonium coupling chemistry and the effects on hMSC proliferation and 
differentiation. Biomaterials 2008, 29 (19), 2829-38. 

 
[144] Ha, S. W.; Gracz, H. S.; Tonelli, A. E.; Hudson, S. M., Structural study of irregular 

amino acid sequences in the heavy chain of Bombyx mori silk fibroin. 
Biomacromolecules 2005, 6 (5), 2563-9. 


	Cytotoxic and antimicrobial effects of silver-containing surfaces
	Recommended Citation

	Microsoft Word - Thesis_Working.docx

